| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpolem0 | GIF version | ||
| Description: Lemma for nconstwlpo 16146. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| nconstwlpolem0.g | ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) |
| nconstwlpolem0.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) |
| nconstwlpolem0.0 | ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
| Ref | Expression |
|---|---|
| nconstwlpolem0 | ⊢ (𝜑 → 𝐴 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nconstwlpolem0.a | . . 3 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) | |
| 2 | fveqeq2 5598 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((𝐺‘𝑥) = 0 ↔ (𝐺‘𝑖) = 0)) | |
| 3 | nconstwlpolem0.0 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) | |
| 4 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 6 | 2, 4, 5 | rspcdva 2886 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) = 0) |
| 7 | 6 | oveq2d 5973 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = ((1 / (2↑𝑖)) · 0)) |
| 8 | 2nn 9218 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℕ) |
| 10 | 5 | nnnn0d 9368 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
| 11 | 9, 10 | nnexpcld 10862 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ) |
| 12 | 11 | nnrecred 9103 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
| 13 | 12 | recnd 8121 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ) |
| 14 | 13 | mul01d 8485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 0) = 0) |
| 15 | 7, 14 | eqtrd 2239 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = 0) |
| 16 | 15 | sumeq2dv 11754 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = Σ𝑖 ∈ ℕ 0) |
| 17 | 1, 16 | eqtrid 2251 | . 2 ⊢ (𝜑 → 𝐴 = Σ𝑖 ∈ ℕ 0) |
| 18 | 1z 9418 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 19 | nnuz 9704 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 20 | 19 | eqimssi 3253 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) |
| 21 | elnnuz 9705 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) | |
| 22 | 21 | biimpri 133 | . . . . . . . 8 ⊢ (𝑗 ∈ (ℤ≥‘1) → 𝑗 ∈ ℕ) |
| 23 | 22 | orcd 735 | . . . . . . 7 ⊢ (𝑗 ∈ (ℤ≥‘1) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) |
| 24 | df-dc 837 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | |
| 25 | 23, 24 | sylibr 134 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘1) → DECID 𝑗 ∈ ℕ) |
| 26 | 25 | rgen 2560 | . . . . 5 ⊢ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ |
| 27 | 18, 20, 26 | 3pm3.2i 1178 | . . . 4 ⊢ (1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) |
| 28 | 27 | orci 733 | . . 3 ⊢ ((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) |
| 29 | isumz 11775 | . . 3 ⊢ (((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) → Σ𝑖 ∈ ℕ 0 = 0) | |
| 30 | 28, 29 | ax-mp 5 | . 2 ⊢ Σ𝑖 ∈ ℕ 0 = 0 |
| 31 | 17, 30 | eqtrdi 2255 | 1 ⊢ (𝜑 → 𝐴 = 0) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 {cpr 3639 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 Fincfn 6840 0cc0 7945 1c1 7946 · cmul 7950 / cdiv 8765 ℕcn 9056 2c2 9107 ℤcz 9392 ℤ≥cuz 9668 ↑cexp 10705 Σcsu 11739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 |
| This theorem is referenced by: nconstwlpolem 16145 |
| Copyright terms: Public domain | W3C validator |