| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpolem0 | GIF version | ||
| Description: Lemma for nconstwlpo 16393. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
| Ref | Expression |
|---|---|
| nconstwlpolem0.g | ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) |
| nconstwlpolem0.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) |
| nconstwlpolem0.0 | ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
| Ref | Expression |
|---|---|
| nconstwlpolem0 | ⊢ (𝜑 → 𝐴 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nconstwlpolem0.a | . . 3 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) | |
| 2 | fveqeq2 5635 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((𝐺‘𝑥) = 0 ↔ (𝐺‘𝑖) = 0)) | |
| 3 | nconstwlpolem0.0 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) | |
| 4 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 6 | 2, 4, 5 | rspcdva 2912 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) = 0) |
| 7 | 6 | oveq2d 6016 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = ((1 / (2↑𝑖)) · 0)) |
| 8 | 2nn 9268 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℕ) |
| 10 | 5 | nnnn0d 9418 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
| 11 | 9, 10 | nnexpcld 10912 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ) |
| 12 | 11 | nnrecred 9153 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
| 13 | 12 | recnd 8171 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ) |
| 14 | 13 | mul01d 8535 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 0) = 0) |
| 15 | 7, 14 | eqtrd 2262 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = 0) |
| 16 | 15 | sumeq2dv 11874 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = Σ𝑖 ∈ ℕ 0) |
| 17 | 1, 16 | eqtrid 2274 | . 2 ⊢ (𝜑 → 𝐴 = Σ𝑖 ∈ ℕ 0) |
| 18 | 1z 9468 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 19 | nnuz 9754 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 20 | 19 | eqimssi 3280 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) |
| 21 | elnnuz 9755 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) | |
| 22 | 21 | biimpri 133 | . . . . . . . 8 ⊢ (𝑗 ∈ (ℤ≥‘1) → 𝑗 ∈ ℕ) |
| 23 | 22 | orcd 738 | . . . . . . 7 ⊢ (𝑗 ∈ (ℤ≥‘1) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) |
| 24 | df-dc 840 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | |
| 25 | 23, 24 | sylibr 134 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘1) → DECID 𝑗 ∈ ℕ) |
| 26 | 25 | rgen 2583 | . . . . 5 ⊢ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ |
| 27 | 18, 20, 26 | 3pm3.2i 1199 | . . . 4 ⊢ (1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) |
| 28 | 27 | orci 736 | . . 3 ⊢ ((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) |
| 29 | isumz 11895 | . . 3 ⊢ (((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) → Σ𝑖 ∈ ℕ 0 = 0) | |
| 30 | 28, 29 | ax-mp 5 | . 2 ⊢ Σ𝑖 ∈ ℕ 0 = 0 |
| 31 | 17, 30 | eqtrdi 2278 | 1 ⊢ (𝜑 → 𝐴 = 0) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 DECID wdc 839 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 {cpr 3667 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 Fincfn 6885 0cc0 7995 1c1 7996 · cmul 8000 / cdiv 8815 ℕcn 9106 2c2 9157 ℤcz 9442 ℤ≥cuz 9718 ↑cexp 10755 Σcsu 11859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: nconstwlpolem 16392 |
| Copyright terms: Public domain | W3C validator |