![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpolem0 | GIF version |
Description: Lemma for nconstwlpo 15626. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
Ref | Expression |
---|---|
nconstwlpolem0.g | ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) |
nconstwlpolem0.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) |
nconstwlpolem0.0 | ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
Ref | Expression |
---|---|
nconstwlpolem0 | ⊢ (𝜑 → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nconstwlpolem0.a | . . 3 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) | |
2 | fveqeq2 5564 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((𝐺‘𝑥) = 0 ↔ (𝐺‘𝑖) = 0)) | |
3 | nconstwlpolem0.0 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) | |
4 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
5 | simpr 110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
6 | 2, 4, 5 | rspcdva 2870 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) = 0) |
7 | 6 | oveq2d 5935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = ((1 / (2↑𝑖)) · 0)) |
8 | 2nn 9146 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℕ) |
10 | 5 | nnnn0d 9296 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
11 | 9, 10 | nnexpcld 10769 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ) |
12 | 11 | nnrecred 9031 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
13 | 12 | recnd 8050 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ) |
14 | 13 | mul01d 8414 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 0) = 0) |
15 | 7, 14 | eqtrd 2226 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = 0) |
16 | 15 | sumeq2dv 11514 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = Σ𝑖 ∈ ℕ 0) |
17 | 1, 16 | eqtrid 2238 | . 2 ⊢ (𝜑 → 𝐴 = Σ𝑖 ∈ ℕ 0) |
18 | 1z 9346 | . . . . 5 ⊢ 1 ∈ ℤ | |
19 | nnuz 9631 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
20 | 19 | eqimssi 3236 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) |
21 | elnnuz 9632 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) | |
22 | 21 | biimpri 133 | . . . . . . . 8 ⊢ (𝑗 ∈ (ℤ≥‘1) → 𝑗 ∈ ℕ) |
23 | 22 | orcd 734 | . . . . . . 7 ⊢ (𝑗 ∈ (ℤ≥‘1) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) |
24 | df-dc 836 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | |
25 | 23, 24 | sylibr 134 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘1) → DECID 𝑗 ∈ ℕ) |
26 | 25 | rgen 2547 | . . . . 5 ⊢ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ |
27 | 18, 20, 26 | 3pm3.2i 1177 | . . . 4 ⊢ (1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) |
28 | 27 | orci 732 | . . 3 ⊢ ((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) |
29 | isumz 11535 | . . 3 ⊢ (((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) → Σ𝑖 ∈ ℕ 0 = 0) | |
30 | 28, 29 | ax-mp 5 | . 2 ⊢ Σ𝑖 ∈ ℕ 0 = 0 |
31 | 17, 30 | eqtrdi 2242 | 1 ⊢ (𝜑 → 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 {cpr 3620 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 Fincfn 6796 0cc0 7874 1c1 7875 · cmul 7879 / cdiv 8693 ℕcn 8984 2c2 9035 ℤcz 9320 ℤ≥cuz 9595 ↑cexp 10612 Σcsu 11499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 |
This theorem is referenced by: nconstwlpolem 15625 |
Copyright terms: Public domain | W3C validator |