Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolem0 GIF version

Theorem nconstwlpolem0 13941
Description: Lemma for nconstwlpo 13944. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g (𝜑𝐺:ℕ⟶{0, 1})
nconstwlpolem0.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
nconstwlpolem0.0 (𝜑 → ∀𝑥 ∈ ℕ (𝐺𝑥) = 0)
Assertion
Ref Expression
nconstwlpolem0 (𝜑𝐴 = 0)
Distinct variable groups:   𝑥,𝐺   𝜑,𝑖   𝑥,𝑖
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖)   𝐺(𝑖)

Proof of Theorem nconstwlpolem0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolem0.a . . 3 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖))
2 fveqeq2 5495 . . . . . . 7 (𝑥 = 𝑖 → ((𝐺𝑥) = 0 ↔ (𝐺𝑖) = 0))
3 nconstwlpolem0.0 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℕ (𝐺𝑥) = 0)
43adantr 274 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐺𝑥) = 0)
5 simpr 109 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
62, 4, 5rspcdva 2835 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (𝐺𝑖) = 0)
76oveq2d 5858 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) = ((1 / (2↑𝑖)) · 0))
8 2nn 9018 . . . . . . . . . 10 2 ∈ ℕ
98a1i 9 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℕ)
105nnnn0d 9167 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0)
119, 10nnexpcld 10610 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ)
1211nnrecred 8904 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
1312recnd 7927 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
1413mul01d 8291 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 0) = 0)
157, 14eqtrd 2198 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺𝑖)) = 0)
1615sumeq2dv 11309 . . 3 (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺𝑖)) = Σ𝑖 ∈ ℕ 0)
171, 16syl5eq 2211 . 2 (𝜑𝐴 = Σ𝑖 ∈ ℕ 0)
18 1z 9217 . . . . 5 1 ∈ ℤ
19 nnuz 9501 . . . . . 6 ℕ = (ℤ‘1)
2019eqimssi 3198 . . . . 5 ℕ ⊆ (ℤ‘1)
21 elnnuz 9502 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
2221biimpri 132 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
2322orcd 723 . . . . . . 7 (𝑗 ∈ (ℤ‘1) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ))
24 df-dc 825 . . . . . . 7 (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ))
2523, 24sylibr 133 . . . . . 6 (𝑗 ∈ (ℤ‘1) → DECID 𝑗 ∈ ℕ)
2625rgen 2519 . . . . 5 𝑗 ∈ (ℤ‘1)DECID 𝑗 ∈ ℕ
2718, 20, 263pm3.2i 1165 . . . 4 (1 ∈ ℤ ∧ ℕ ⊆ (ℤ‘1) ∧ ∀𝑗 ∈ (ℤ‘1)DECID 𝑗 ∈ ℕ)
2827orci 721 . . 3 ((1 ∈ ℤ ∧ ℕ ⊆ (ℤ‘1) ∧ ∀𝑗 ∈ (ℤ‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin)
29 isumz 11330 . . 3 (((1 ∈ ℤ ∧ ℕ ⊆ (ℤ‘1) ∧ ∀𝑗 ∈ (ℤ‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) → Σ𝑖 ∈ ℕ 0 = 0)
3028, 29ax-mp 5 . 2 Σ𝑖 ∈ ℕ 0 = 0
3117, 30eqtrdi 2215 1 (𝜑𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wral 2444  wss 3116  {cpr 3577  wf 5184  cfv 5188  (class class class)co 5842  Fincfn 6706  0cc0 7753  1c1 7754   · cmul 7758   / cdiv 8568  cn 8857  2c2 8908  cz 9191  cuz 9466  cexp 10454  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  nconstwlpolem  13943
  Copyright terms: Public domain W3C validator