Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpolem0 | GIF version |
Description: Lemma for nconstwlpo 13585. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
Ref | Expression |
---|---|
nconstwlpolem0.g | ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) |
nconstwlpolem0.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) |
nconstwlpolem0.0 | ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
Ref | Expression |
---|---|
nconstwlpolem0 | ⊢ (𝜑 → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nconstwlpolem0.a | . . 3 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) | |
2 | fveqeq2 5470 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((𝐺‘𝑥) = 0 ↔ (𝐺‘𝑖) = 0)) | |
3 | nconstwlpolem0.0 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) | |
4 | 3 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) |
5 | simpr 109 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
6 | 2, 4, 5 | rspcdva 2818 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) = 0) |
7 | 6 | oveq2d 5830 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = ((1 / (2↑𝑖)) · 0)) |
8 | 2nn 8973 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℕ) |
10 | 5 | nnnn0d 9122 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
11 | 9, 10 | nnexpcld 10550 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ) |
12 | 11 | nnrecred 8859 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
13 | 12 | recnd 7885 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ) |
14 | 13 | mul01d 8247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 0) = 0) |
15 | 7, 14 | eqtrd 2187 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = 0) |
16 | 15 | sumeq2dv 11242 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = Σ𝑖 ∈ ℕ 0) |
17 | 1, 16 | syl5eq 2199 | . 2 ⊢ (𝜑 → 𝐴 = Σ𝑖 ∈ ℕ 0) |
18 | 1z 9172 | . . . . 5 ⊢ 1 ∈ ℤ | |
19 | nnuz 9453 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
20 | 19 | eqimssi 3180 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) |
21 | elnnuz 9454 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) | |
22 | 21 | biimpri 132 | . . . . . . . 8 ⊢ (𝑗 ∈ (ℤ≥‘1) → 𝑗 ∈ ℕ) |
23 | 22 | orcd 723 | . . . . . . 7 ⊢ (𝑗 ∈ (ℤ≥‘1) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) |
24 | df-dc 821 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | |
25 | 23, 24 | sylibr 133 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘1) → DECID 𝑗 ∈ ℕ) |
26 | 25 | rgen 2507 | . . . . 5 ⊢ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ |
27 | 18, 20, 26 | 3pm3.2i 1160 | . . . 4 ⊢ (1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) |
28 | 27 | orci 721 | . . 3 ⊢ ((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) |
29 | isumz 11263 | . . 3 ⊢ (((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) → Σ𝑖 ∈ ℕ 0 = 0) | |
30 | 28, 29 | ax-mp 5 | . 2 ⊢ Σ𝑖 ∈ ℕ 0 = 0 |
31 | 17, 30 | eqtrdi 2203 | 1 ⊢ (𝜑 → 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 820 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 ∀wral 2432 ⊆ wss 3098 {cpr 3557 ⟶wf 5159 ‘cfv 5163 (class class class)co 5814 Fincfn 6674 0cc0 7711 1c1 7712 · cmul 7716 / cdiv 8524 ℕcn 8812 2c2 8863 ℤcz 9146 ℤ≥cuz 9418 ↑cexp 10396 Σcsu 11227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-isom 5172 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-frec 6328 df-1o 6353 df-oadd 6357 df-er 6469 df-en 6675 df-dom 6676 df-fin 6677 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-fz 9891 df-fzo 10020 df-seqfrec 10323 df-exp 10397 df-ihash 10627 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-clim 11153 df-sumdc 11228 |
This theorem is referenced by: nconstwlpolem 13584 |
Copyright terms: Public domain | W3C validator |