| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nconstwlpolem0 | GIF version | ||
| Description: Lemma for nconstwlpo 15710. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| nconstwlpolem0.g | ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) | 
| nconstwlpolem0.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) | 
| nconstwlpolem0.0 | ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) | 
| Ref | Expression | 
|---|---|
| nconstwlpolem0 | ⊢ (𝜑 → 𝐴 = 0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nconstwlpolem0.a | . . 3 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) | |
| 2 | fveqeq2 5567 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((𝐺‘𝑥) = 0 ↔ (𝐺‘𝑖) = 0)) | |
| 3 | nconstwlpolem0.0 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) | |
| 4 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) | 
| 5 | simpr 110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 6 | 2, 4, 5 | rspcdva 2873 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐺‘𝑖) = 0) | 
| 7 | 6 | oveq2d 5938 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = ((1 / (2↑𝑖)) · 0)) | 
| 8 | 2nn 9152 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 9 | 8 | a1i 9 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℕ) | 
| 10 | 5 | nnnn0d 9302 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) | 
| 11 | 9, 10 | nnexpcld 10787 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ) | 
| 12 | 11 | nnrecred 9037 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) | 
| 13 | 12 | recnd 8055 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ) | 
| 14 | 13 | mul01d 8419 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 0) = 0) | 
| 15 | 7, 14 | eqtrd 2229 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = 0) | 
| 16 | 15 | sumeq2dv 11533 | . . 3 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) = Σ𝑖 ∈ ℕ 0) | 
| 17 | 1, 16 | eqtrid 2241 | . 2 ⊢ (𝜑 → 𝐴 = Σ𝑖 ∈ ℕ 0) | 
| 18 | 1z 9352 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 19 | nnuz 9637 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 20 | 19 | eqimssi 3239 | . . . . 5 ⊢ ℕ ⊆ (ℤ≥‘1) | 
| 21 | elnnuz 9638 | . . . . . . . . 9 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) | |
| 22 | 21 | biimpri 133 | . . . . . . . 8 ⊢ (𝑗 ∈ (ℤ≥‘1) → 𝑗 ∈ ℕ) | 
| 23 | 22 | orcd 734 | . . . . . . 7 ⊢ (𝑗 ∈ (ℤ≥‘1) → (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | 
| 24 | df-dc 836 | . . . . . . 7 ⊢ (DECID 𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ ∨ ¬ 𝑗 ∈ ℕ)) | |
| 25 | 23, 24 | sylibr 134 | . . . . . 6 ⊢ (𝑗 ∈ (ℤ≥‘1) → DECID 𝑗 ∈ ℕ) | 
| 26 | 25 | rgen 2550 | . . . . 5 ⊢ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ | 
| 27 | 18, 20, 26 | 3pm3.2i 1177 | . . . 4 ⊢ (1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) | 
| 28 | 27 | orci 732 | . . 3 ⊢ ((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) | 
| 29 | isumz 11554 | . . 3 ⊢ (((1 ∈ ℤ ∧ ℕ ⊆ (ℤ≥‘1) ∧ ∀𝑗 ∈ (ℤ≥‘1)DECID 𝑗 ∈ ℕ) ∨ ℕ ∈ Fin) → Σ𝑖 ∈ ℕ 0 = 0) | |
| 30 | 28, 29 | ax-mp 5 | . 2 ⊢ Σ𝑖 ∈ ℕ 0 = 0 | 
| 31 | 17, 30 | eqtrdi 2245 | 1 ⊢ (𝜑 → 𝐴 = 0) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 {cpr 3623 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 Fincfn 6799 0cc0 7879 1c1 7880 · cmul 7884 / cdiv 8699 ℕcn 8990 2c2 9041 ℤcz 9326 ℤ≥cuz 9601 ↑cexp 10630 Σcsu 11518 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 | 
| This theorem is referenced by: nconstwlpolem 15709 | 
| Copyright terms: Public domain | W3C validator |