| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotsdifunifndx | GIF version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9060 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1nn 9001 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 9267 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 9266 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 9594 | . . . . . 6 ⊢ 2 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 9494 | . . . . 5 ⊢ 2 < ;13 |
| 7 | 1, 6 | ltneii 8123 | . . . 4 ⊢ 2 ≠ ;13 |
| 8 | plusgndx 12787 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 9 | unifndx 12899 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 10 | 8, 9 | neeq12i 2384 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
| 11 | 7, 10 | mpbir 146 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
| 12 | 3re 9064 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 9593 | . . . . . 6 ⊢ 3 < ;10 | |
| 14 | 2, 3, 3, 13 | declti 9494 | . . . . 5 ⊢ 3 < ;13 |
| 15 | 12, 14 | ltneii 8123 | . . . 4 ⊢ 3 ≠ ;13 |
| 16 | mulrndx 12807 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 17 | 16, 9 | neeq12i 2384 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
| 18 | 15, 17 | mpbir 146 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
| 19 | 4re 9067 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 9268 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 9592 | . . . . . 6 ⊢ 4 < ;10 | |
| 22 | 2, 3, 20, 21 | declti 9494 | . . . . 5 ⊢ 4 < ;13 |
| 23 | 19, 22 | ltneii 8123 | . . . 4 ⊢ 4 ≠ ;13 |
| 24 | starvndx 12816 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
| 25 | 24, 9 | neeq12i 2384 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
| 26 | 23, 25 | mpbir 146 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
| 27 | 11, 18, 26 | 3pm3.2i 1177 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
| 28 | 10re 9475 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 29 | 1nn0 9265 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 9264 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn 9153 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 32 | 3pos 9084 | . . . . . 6 ⊢ 0 < 3 | |
| 33 | 29, 30, 31, 32 | declt 9484 | . . . . 5 ⊢ ;10 < ;13 |
| 34 | 28, 33 | ltneii 8123 | . . . 4 ⊢ ;10 ≠ ;13 |
| 35 | plendx 12877 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 36 | 35, 9 | neeq12i 2384 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
| 37 | 34, 36 | mpbir 146 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
| 38 | 2nn 9152 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 39 | 29, 38 | decnncl 9476 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 40 | 39 | nnrei 8999 | . . . . 5 ⊢ ;12 ∈ ℝ |
| 41 | 2lt3 9161 | . . . . . 6 ⊢ 2 < 3 | |
| 42 | 29, 4, 31, 41 | declt 9484 | . . . . 5 ⊢ ;12 < ;13 |
| 43 | 40, 42 | ltneii 8123 | . . . 4 ⊢ ;12 ≠ ;13 |
| 44 | dsndx 12888 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 45 | 44, 9 | neeq12i 2384 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
| 46 | 43, 45 | mpbir 146 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
| 47 | 37, 46 | pm3.2i 272 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
| 48 | 27, 47 | pm3.2i 272 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 980 ≠ wne 2367 ‘cfv 5258 0cc0 7879 1c1 7880 2c2 9041 3c3 9042 4c4 9043 ;cdc 9457 ndxcnx 12675 +gcplusg 12755 .rcmulr 12756 *𝑟cstv 12757 lecple 12762 distcds 12764 UnifSetcunif 12765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-ndx 12681 df-slot 12682 df-plusg 12768 df-mulr 12769 df-starv 12770 df-ple 12775 df-ds 12777 df-unif 12778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |