![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdifunifndx | GIF version |
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8992 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1nn 8933 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 3nn0 9197 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
4 | 2nn0 9196 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
5 | 2lt10 9524 | . . . . . 6 ⊢ 2 < ;10 | |
6 | 2, 3, 4, 5 | declti 9424 | . . . . 5 ⊢ 2 < ;13 |
7 | 1, 6 | ltneii 8057 | . . . 4 ⊢ 2 ≠ ;13 |
8 | plusgndx 12571 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
9 | unifndx 12683 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
10 | 8, 9 | neeq12i 2364 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
11 | 7, 10 | mpbir 146 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
12 | 3re 8996 | . . . . 5 ⊢ 3 ∈ ℝ | |
13 | 3lt10 9523 | . . . . . 6 ⊢ 3 < ;10 | |
14 | 2, 3, 3, 13 | declti 9424 | . . . . 5 ⊢ 3 < ;13 |
15 | 12, 14 | ltneii 8057 | . . . 4 ⊢ 3 ≠ ;13 |
16 | mulrndx 12591 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
17 | 16, 9 | neeq12i 2364 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
18 | 15, 17 | mpbir 146 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
19 | 4re 8999 | . . . . 5 ⊢ 4 ∈ ℝ | |
20 | 4nn0 9198 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4lt10 9522 | . . . . . 6 ⊢ 4 < ;10 | |
22 | 2, 3, 20, 21 | declti 9424 | . . . . 5 ⊢ 4 < ;13 |
23 | 19, 22 | ltneii 8057 | . . . 4 ⊢ 4 ≠ ;13 |
24 | starvndx 12600 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
25 | 24, 9 | neeq12i 2364 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
26 | 23, 25 | mpbir 146 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
27 | 11, 18, 26 | 3pm3.2i 1175 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
28 | 10re 9405 | . . . . 5 ⊢ ;10 ∈ ℝ | |
29 | 1nn0 9195 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
30 | 0nn0 9194 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
31 | 3nn 9084 | . . . . . 6 ⊢ 3 ∈ ℕ | |
32 | 3pos 9016 | . . . . . 6 ⊢ 0 < 3 | |
33 | 29, 30, 31, 32 | declt 9414 | . . . . 5 ⊢ ;10 < ;13 |
34 | 28, 33 | ltneii 8057 | . . . 4 ⊢ ;10 ≠ ;13 |
35 | plendx 12661 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
36 | 35, 9 | neeq12i 2364 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
37 | 34, 36 | mpbir 146 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
38 | 2nn 9083 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
39 | 29, 38 | decnncl 9406 | . . . . . 6 ⊢ ;12 ∈ ℕ |
40 | 39 | nnrei 8931 | . . . . 5 ⊢ ;12 ∈ ℝ |
41 | 2lt3 9092 | . . . . . 6 ⊢ 2 < 3 | |
42 | 29, 4, 31, 41 | declt 9414 | . . . . 5 ⊢ ;12 < ;13 |
43 | 40, 42 | ltneii 8057 | . . . 4 ⊢ ;12 ≠ ;13 |
44 | dsndx 12672 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
45 | 44, 9 | neeq12i 2364 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
46 | 43, 45 | mpbir 146 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
47 | 37, 46 | pm3.2i 272 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
48 | 27, 47 | pm3.2i 272 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∧ w3a 978 ≠ wne 2347 ‘cfv 5218 0cc0 7814 1c1 7815 2c2 8973 3c3 8974 4c4 8975 ;cdc 9387 ndxcnx 12462 +gcplusg 12539 .rcmulr 12540 *𝑟cstv 12541 lecple 12546 distcds 12548 UnifSetcunif 12549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-7 8986 df-8 8987 df-9 8988 df-n0 9180 df-z 9257 df-dec 9388 df-ndx 12468 df-slot 12469 df-plusg 12552 df-mulr 12553 df-starv 12554 df-ple 12559 df-ds 12561 df-unif 12562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |