| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotsdifunifndx | GIF version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9106 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1nn 9047 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 9313 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 9312 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 9641 | . . . . . 6 ⊢ 2 < ;10 | |
| 6 | 2, 3, 4, 5 | declti 9541 | . . . . 5 ⊢ 2 < ;13 |
| 7 | 1, 6 | ltneii 8169 | . . . 4 ⊢ 2 ≠ ;13 |
| 8 | plusgndx 12941 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
| 9 | unifndx 13058 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
| 10 | 8, 9 | neeq12i 2393 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
| 11 | 7, 10 | mpbir 146 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
| 12 | 3re 9110 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 9640 | . . . . . 6 ⊢ 3 < ;10 | |
| 14 | 2, 3, 3, 13 | declti 9541 | . . . . 5 ⊢ 3 < ;13 |
| 15 | 12, 14 | ltneii 8169 | . . . 4 ⊢ 3 ≠ ;13 |
| 16 | mulrndx 12962 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
| 17 | 16, 9 | neeq12i 2393 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
| 18 | 15, 17 | mpbir 146 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
| 19 | 4re 9113 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 9314 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 9639 | . . . . . 6 ⊢ 4 < ;10 | |
| 22 | 2, 3, 20, 21 | declti 9541 | . . . . 5 ⊢ 4 < ;13 |
| 23 | 19, 22 | ltneii 8169 | . . . 4 ⊢ 4 ≠ ;13 |
| 24 | starvndx 12971 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
| 25 | 24, 9 | neeq12i 2393 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
| 26 | 23, 25 | mpbir 146 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
| 27 | 11, 18, 26 | 3pm3.2i 1178 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
| 28 | 10re 9522 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 29 | 1nn0 9311 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 9310 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn 9199 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 32 | 3pos 9130 | . . . . . 6 ⊢ 0 < 3 | |
| 33 | 29, 30, 31, 32 | declt 9531 | . . . . 5 ⊢ ;10 < ;13 |
| 34 | 28, 33 | ltneii 8169 | . . . 4 ⊢ ;10 ≠ ;13 |
| 35 | plendx 13032 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
| 36 | 35, 9 | neeq12i 2393 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
| 37 | 34, 36 | mpbir 146 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
| 38 | 2nn 9198 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 39 | 29, 38 | decnncl 9523 | . . . . . 6 ⊢ ;12 ∈ ℕ |
| 40 | 39 | nnrei 9045 | . . . . 5 ⊢ ;12 ∈ ℝ |
| 41 | 2lt3 9207 | . . . . . 6 ⊢ 2 < 3 | |
| 42 | 29, 4, 31, 41 | declt 9531 | . . . . 5 ⊢ ;12 < ;13 |
| 43 | 40, 42 | ltneii 8169 | . . . 4 ⊢ ;12 ≠ ;13 |
| 44 | dsndx 13047 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
| 45 | 44, 9 | neeq12i 2393 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
| 46 | 43, 45 | mpbir 146 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
| 47 | 37, 46 | pm3.2i 272 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
| 48 | 27, 47 | pm3.2i 272 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 981 ≠ wne 2376 ‘cfv 5271 0cc0 7925 1c1 7926 2c2 9087 3c3 9088 4c4 9089 ;cdc 9504 ndxcnx 12829 +gcplusg 12909 .rcmulr 12910 *𝑟cstv 12911 lecple 12916 distcds 12918 UnifSetcunif 12919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-dec 9505 df-ndx 12835 df-slot 12836 df-plusg 12922 df-mulr 12923 df-starv 12924 df-ple 12929 df-ds 12931 df-unif 12932 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |