![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdifunifndx | GIF version |
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx | ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9054 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1nn 8995 | . . . . . 6 ⊢ 1 ∈ ℕ | |
3 | 3nn0 9261 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
4 | 2nn0 9260 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
5 | 2lt10 9588 | . . . . . 6 ⊢ 2 < ;10 | |
6 | 2, 3, 4, 5 | declti 9488 | . . . . 5 ⊢ 2 < ;13 |
7 | 1, 6 | ltneii 8118 | . . . 4 ⊢ 2 ≠ ;13 |
8 | plusgndx 12730 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
9 | unifndx 12842 | . . . . 5 ⊢ (UnifSet‘ndx) = ;13 | |
10 | 8, 9 | neeq12i 2381 | . . . 4 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ↔ 2 ≠ ;13) |
11 | 7, 10 | mpbir 146 | . . 3 ⊢ (+g‘ndx) ≠ (UnifSet‘ndx) |
12 | 3re 9058 | . . . . 5 ⊢ 3 ∈ ℝ | |
13 | 3lt10 9587 | . . . . . 6 ⊢ 3 < ;10 | |
14 | 2, 3, 3, 13 | declti 9488 | . . . . 5 ⊢ 3 < ;13 |
15 | 12, 14 | ltneii 8118 | . . . 4 ⊢ 3 ≠ ;13 |
16 | mulrndx 12750 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
17 | 16, 9 | neeq12i 2381 | . . . 4 ⊢ ((.r‘ndx) ≠ (UnifSet‘ndx) ↔ 3 ≠ ;13) |
18 | 15, 17 | mpbir 146 | . . 3 ⊢ (.r‘ndx) ≠ (UnifSet‘ndx) |
19 | 4re 9061 | . . . . 5 ⊢ 4 ∈ ℝ | |
20 | 4nn0 9262 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
21 | 4lt10 9586 | . . . . . 6 ⊢ 4 < ;10 | |
22 | 2, 3, 20, 21 | declti 9488 | . . . . 5 ⊢ 4 < ;13 |
23 | 19, 22 | ltneii 8118 | . . . 4 ⊢ 4 ≠ ;13 |
24 | starvndx 12759 | . . . . 5 ⊢ (*𝑟‘ndx) = 4 | |
25 | 24, 9 | neeq12i 2381 | . . . 4 ⊢ ((*𝑟‘ndx) ≠ (UnifSet‘ndx) ↔ 4 ≠ ;13) |
26 | 23, 25 | mpbir 146 | . . 3 ⊢ (*𝑟‘ndx) ≠ (UnifSet‘ndx) |
27 | 11, 18, 26 | 3pm3.2i 1177 | . 2 ⊢ ((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) |
28 | 10re 9469 | . . . . 5 ⊢ ;10 ∈ ℝ | |
29 | 1nn0 9259 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
30 | 0nn0 9258 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
31 | 3nn 9147 | . . . . . 6 ⊢ 3 ∈ ℕ | |
32 | 3pos 9078 | . . . . . 6 ⊢ 0 < 3 | |
33 | 29, 30, 31, 32 | declt 9478 | . . . . 5 ⊢ ;10 < ;13 |
34 | 28, 33 | ltneii 8118 | . . . 4 ⊢ ;10 ≠ ;13 |
35 | plendx 12820 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
36 | 35, 9 | neeq12i 2381 | . . . 4 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ↔ ;10 ≠ ;13) |
37 | 34, 36 | mpbir 146 | . . 3 ⊢ (le‘ndx) ≠ (UnifSet‘ndx) |
38 | 2nn 9146 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
39 | 29, 38 | decnncl 9470 | . . . . . 6 ⊢ ;12 ∈ ℕ |
40 | 39 | nnrei 8993 | . . . . 5 ⊢ ;12 ∈ ℝ |
41 | 2lt3 9155 | . . . . . 6 ⊢ 2 < 3 | |
42 | 29, 4, 31, 41 | declt 9478 | . . . . 5 ⊢ ;12 < ;13 |
43 | 40, 42 | ltneii 8118 | . . . 4 ⊢ ;12 ≠ ;13 |
44 | dsndx 12831 | . . . . 5 ⊢ (dist‘ndx) = ;12 | |
45 | 44, 9 | neeq12i 2381 | . . . 4 ⊢ ((dist‘ndx) ≠ (UnifSet‘ndx) ↔ ;12 ≠ ;13) |
46 | 43, 45 | mpbir 146 | . . 3 ⊢ (dist‘ndx) ≠ (UnifSet‘ndx) |
47 | 37, 46 | pm3.2i 272 | . 2 ⊢ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx)) |
48 | 27, 47 | pm3.2i 272 | 1 ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∧ w3a 980 ≠ wne 2364 ‘cfv 5255 0cc0 7874 1c1 7875 2c2 9035 3c3 9036 4c4 9037 ;cdc 9451 ndxcnx 12618 +gcplusg 12698 .rcmulr 12699 *𝑟cstv 12700 lecple 12705 distcds 12707 UnifSetcunif 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-ndx 12624 df-slot 12625 df-plusg 12711 df-mulr 12712 df-starv 12713 df-ple 12718 df-ds 12720 df-unif 12721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |