ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-dvds GIF version

Theorem ex-dvds 14402
Description: Example for df-dvds 11790: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.)
Assertion
Ref Expression
ex-dvds 3 ∥ 6

Proof of Theorem ex-dvds
StepHypRef Expression
1 2z 9279 . . 3 2 ∈ ℤ
2 3z 9280 . . 3 3 ∈ ℤ
3 6nn 9082 . . . 4 6 ∈ ℕ
43nnzi 9272 . . 3 6 ∈ ℤ
51, 2, 43pm3.2i 1175 . 2 (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ)
6 3cn 8992 . . . 4 3 ∈ ℂ
762timesi 9047 . . 3 (2 · 3) = (3 + 3)
8 3p3e6 9059 . . 3 (3 + 3) = 6
97, 8eqtri 2198 . 2 (2 · 3) = 6
10 dvds0lem 11803 . 2 (((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) ∧ (2 · 3) = 6) → 3 ∥ 6)
115, 9, 10mp2an 426 1 3 ∥ 6
Colors of variables: wff set class
Syntax hints:  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4003  (class class class)co 5874   + caddc 7813   · cmul 7815  2c2 8968  3c3 8969  6c6 8972  cz 9251  cdvds 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-5 8979  df-6 8980  df-z 9252  df-dvds 11790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator