| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotstnscsi | GIF version | ||
| Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotstnscsi | ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9069 | . . . 4 ⊢ 5 ∈ ℝ | |
| 2 | 5lt9 9191 | . . . 4 ⊢ 5 < 9 | |
| 3 | 1, 2 | gtneii 8122 | . . 3 ⊢ 9 ≠ 5 |
| 4 | tsetndx 12863 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
| 5 | scandx 12828 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
| 6 | 4, 5 | neeq12i 2384 | . . 3 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ↔ 9 ≠ 5) |
| 7 | 3, 6 | mpbir 146 | . 2 ⊢ (TopSet‘ndx) ≠ (Scalar‘ndx) |
| 8 | 6re 9071 | . . . 4 ⊢ 6 ∈ ℝ | |
| 9 | 6lt9 9190 | . . . 4 ⊢ 6 < 9 | |
| 10 | 8, 9 | gtneii 8122 | . . 3 ⊢ 9 ≠ 6 |
| 11 | vscandx 12834 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 12 | 4, 11 | neeq12i 2384 | . . 3 ⊢ ((TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 9 ≠ 6) |
| 13 | 10, 12 | mpbir 146 | . 2 ⊢ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 14 | 8re 9075 | . . . 4 ⊢ 8 ∈ ℝ | |
| 15 | 8lt9 9188 | . . . 4 ⊢ 8 < 9 | |
| 16 | 14, 15 | gtneii 8122 | . . 3 ⊢ 9 ≠ 8 |
| 17 | ipndx 12846 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
| 18 | 4, 17 | neeq12i 2384 | . . 3 ⊢ ((TopSet‘ndx) ≠ (·𝑖‘ndx) ↔ 9 ≠ 8) |
| 19 | 16, 18 | mpbir 146 | . 2 ⊢ (TopSet‘ndx) ≠ (·𝑖‘ndx) |
| 20 | 7, 13, 19 | 3pm3.2i 1177 | 1 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 980 ≠ wne 2367 ‘cfv 5258 5c5 9044 6c6 9045 8c8 9047 9c9 9048 ndxcnx 12675 Scalarcsca 12758 ·𝑠 cvsca 12759 ·𝑖cip 12760 TopSetcts 12761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-ndx 12681 df-slot 12682 df-sca 12771 df-vsca 12772 df-ip 12773 df-tset 12774 |
| This theorem is referenced by: sratsetg 14001 |
| Copyright terms: Public domain | W3C validator |