| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotstnscsi | GIF version | ||
| Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| slotstnscsi | ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9189 | . . . 4 ⊢ 5 ∈ ℝ | |
| 2 | 5lt9 9311 | . . . 4 ⊢ 5 < 9 | |
| 3 | 1, 2 | gtneii 8242 | . . 3 ⊢ 9 ≠ 5 |
| 4 | tsetndx 13219 | . . . 4 ⊢ (TopSet‘ndx) = 9 | |
| 5 | scandx 13184 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
| 6 | 4, 5 | neeq12i 2417 | . . 3 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ↔ 9 ≠ 5) |
| 7 | 3, 6 | mpbir 146 | . 2 ⊢ (TopSet‘ndx) ≠ (Scalar‘ndx) |
| 8 | 6re 9191 | . . . 4 ⊢ 6 ∈ ℝ | |
| 9 | 6lt9 9310 | . . . 4 ⊢ 6 < 9 | |
| 10 | 8, 9 | gtneii 8242 | . . 3 ⊢ 9 ≠ 6 |
| 11 | vscandx 13190 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 12 | 4, 11 | neeq12i 2417 | . . 3 ⊢ ((TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 9 ≠ 6) |
| 13 | 10, 12 | mpbir 146 | . 2 ⊢ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 14 | 8re 9195 | . . . 4 ⊢ 8 ∈ ℝ | |
| 15 | 8lt9 9308 | . . . 4 ⊢ 8 < 9 | |
| 16 | 14, 15 | gtneii 8242 | . . 3 ⊢ 9 ≠ 8 |
| 17 | ipndx 13202 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
| 18 | 4, 17 | neeq12i 2417 | . . 3 ⊢ ((TopSet‘ndx) ≠ (·𝑖‘ndx) ↔ 9 ≠ 8) |
| 19 | 16, 18 | mpbir 146 | . 2 ⊢ (TopSet‘ndx) ≠ (·𝑖‘ndx) |
| 20 | 7, 13, 19 | 3pm3.2i 1199 | 1 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 1002 ≠ wne 2400 ‘cfv 5318 5c5 9164 6c6 9165 8c8 9167 9c9 9168 ndxcnx 13029 Scalarcsca 13113 ·𝑠 cvsca 13114 ·𝑖cip 13115 TopSetcts 13116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-ndx 13035 df-slot 13036 df-sca 13126 df-vsca 13127 df-ip 13128 df-tset 13129 |
| This theorem is referenced by: sratsetg 14409 |
| Copyright terms: Public domain | W3C validator |