ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotstnscsi GIF version

Theorem slotstnscsi 13142
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
Assertion
Ref Expression
slotstnscsi ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))

Proof of Theorem slotstnscsi
StepHypRef Expression
1 5re 9150 . . . 4 5 ∈ ℝ
2 5lt9 9272 . . . 4 5 < 9
31, 2gtneii 8203 . . 3 9 ≠ 5
4 tsetndx 13133 . . . 4 (TopSet‘ndx) = 9
5 scandx 13098 . . . 4 (Scalar‘ndx) = 5
64, 5neeq12i 2395 . . 3 ((TopSet‘ndx) ≠ (Scalar‘ndx) ↔ 9 ≠ 5)
73, 6mpbir 146 . 2 (TopSet‘ndx) ≠ (Scalar‘ndx)
8 6re 9152 . . . 4 6 ∈ ℝ
9 6lt9 9271 . . . 4 6 < 9
108, 9gtneii 8203 . . 3 9 ≠ 6
11 vscandx 13104 . . . 4 ( ·𝑠 ‘ndx) = 6
124, 11neeq12i 2395 . . 3 ((TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 9 ≠ 6)
1310, 12mpbir 146 . 2 (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx)
14 8re 9156 . . . 4 8 ∈ ℝ
15 8lt9 9269 . . . 4 8 < 9
1614, 15gtneii 8203 . . 3 9 ≠ 8
17 ipndx 13116 . . . 4 (·𝑖‘ndx) = 8
184, 17neeq12i 2395 . . 3 ((TopSet‘ndx) ≠ (·𝑖‘ndx) ↔ 9 ≠ 8)
1916, 18mpbir 146 . 2 (TopSet‘ndx) ≠ (·𝑖‘ndx)
207, 13, 193pm3.2i 1178 1 ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))
Colors of variables: wff set class
Syntax hints:  w3a 981  wne 2378  cfv 5290  5c5 9125  6c6 9126  8c8 9128  9c9 9129  ndxcnx 12944  Scalarcsca 13027   ·𝑠 cvsca 13028  ·𝑖cip 13029  TopSetcts 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-ndx 12950  df-slot 12951  df-sca 13040  df-vsca 13041  df-ip 13042  df-tset 13043
This theorem is referenced by:  sratsetg  14322
  Copyright terms: Public domain W3C validator