ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotstnscsi GIF version

Theorem slotstnscsi 12802
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
Assertion
Ref Expression
slotstnscsi ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))

Proof of Theorem slotstnscsi
StepHypRef Expression
1 5re 9051 . . . 4 5 ∈ ℝ
2 5lt9 9172 . . . 4 5 < 9
31, 2gtneii 8105 . . 3 9 ≠ 5
4 tsetndx 12793 . . . 4 (TopSet‘ndx) = 9
5 scandx 12758 . . . 4 (Scalar‘ndx) = 5
64, 5neeq12i 2381 . . 3 ((TopSet‘ndx) ≠ (Scalar‘ndx) ↔ 9 ≠ 5)
73, 6mpbir 146 . 2 (TopSet‘ndx) ≠ (Scalar‘ndx)
8 6re 9053 . . . 4 6 ∈ ℝ
9 6lt9 9171 . . . 4 6 < 9
108, 9gtneii 8105 . . 3 9 ≠ 6
11 vscandx 12764 . . . 4 ( ·𝑠 ‘ndx) = 6
124, 11neeq12i 2381 . . 3 ((TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 9 ≠ 6)
1310, 12mpbir 146 . 2 (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx)
14 8re 9057 . . . 4 8 ∈ ℝ
15 8lt9 9169 . . . 4 8 < 9
1614, 15gtneii 8105 . . 3 9 ≠ 8
17 ipndx 12776 . . . 4 (·𝑖‘ndx) = 8
184, 17neeq12i 2381 . . 3 ((TopSet‘ndx) ≠ (·𝑖‘ndx) ↔ 9 ≠ 8)
1916, 18mpbir 146 . 2 (TopSet‘ndx) ≠ (·𝑖‘ndx)
207, 13, 193pm3.2i 1177 1 ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))
Colors of variables: wff set class
Syntax hints:  w3a 980  wne 2364  cfv 5246  5c5 9026  6c6 9027  8c8 9029  9c9 9030  ndxcnx 12605  Scalarcsca 12688   ·𝑠 cvsca 12689  ·𝑖cip 12690  TopSetcts 12691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-pre-ltirr 7974  ax-pre-lttrn 7976  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-iota 5207  df-fun 5248  df-fv 5254  df-ov 5913  df-pnf 8046  df-mnf 8047  df-ltxr 8049  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-9 9038  df-ndx 12611  df-slot 12612  df-sca 12701  df-vsca 12702  df-ip 12703  df-tset 12704
This theorem is referenced by:  sratsetg  13925
  Copyright terms: Public domain W3C validator