ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftp GIF version

Theorem ftp 5681
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a 𝐴 ∈ V
ftp.b 𝐵 ∈ V
ftp.c 𝐶 ∈ V
ftp.d 𝑋 ∈ V
ftp.e 𝑌 ∈ V
ftp.f 𝑍 ∈ V
ftp.g 𝐴𝐵
ftp.h 𝐴𝐶
ftp.i 𝐵𝐶
Assertion
Ref Expression
ftp {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3 𝐴 ∈ V
2 ftp.b . . 3 𝐵 ∈ V
3 ftp.c . . 3 𝐶 ∈ V
41, 2, 33pm3.2i 1170 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)
5 ftp.d . . 3 𝑋 ∈ V
6 ftp.e . . 3 𝑌 ∈ V
7 ftp.f . . 3 𝑍 ∈ V
85, 6, 73pm3.2i 1170 . 2 (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)
9 ftp.g . . 3 𝐴𝐵
10 ftp.h . . 3 𝐴𝐶
11 ftp.i . . 3 𝐵𝐶
129, 10, 113pm3.2i 1170 . 2 (𝐴𝐵𝐴𝐶𝐵𝐶)
13 ftpg 5680 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍})
144, 8, 12, 13mp3an 1332 1 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}
Colors of variables: wff set class
Syntax hints:  w3a 973  wcel 2141  wne 2340  Vcvv 2730  {ctp 3585  cop 3586  wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-tp 3591  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator