ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftp GIF version

Theorem ftp 5653
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a 𝐴 ∈ V
ftp.b 𝐵 ∈ V
ftp.c 𝐶 ∈ V
ftp.d 𝑋 ∈ V
ftp.e 𝑌 ∈ V
ftp.f 𝑍 ∈ V
ftp.g 𝐴𝐵
ftp.h 𝐴𝐶
ftp.i 𝐵𝐶
Assertion
Ref Expression
ftp {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3 𝐴 ∈ V
2 ftp.b . . 3 𝐵 ∈ V
3 ftp.c . . 3 𝐶 ∈ V
41, 2, 33pm3.2i 1160 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)
5 ftp.d . . 3 𝑋 ∈ V
6 ftp.e . . 3 𝑌 ∈ V
7 ftp.f . . 3 𝑍 ∈ V
85, 6, 73pm3.2i 1160 . 2 (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)
9 ftp.g . . 3 𝐴𝐵
10 ftp.h . . 3 𝐴𝐶
11 ftp.i . . 3 𝐵𝐶
129, 10, 113pm3.2i 1160 . 2 (𝐴𝐵𝐴𝐶𝐵𝐶)
13 ftpg 5652 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍})
144, 8, 12, 13mp3an 1319 1 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}
Colors of variables: wff set class
Syntax hints:  w3a 963  wcel 2128  wne 2327  Vcvv 2712  {ctp 3562  cop 3563  wf 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-tp 3568  df-op 3569  df-br 3967  df-opab 4027  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator