| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ftp | GIF version | ||
| Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
| Ref | Expression |
|---|---|
| ftp.a | ⊢ 𝐴 ∈ V |
| ftp.b | ⊢ 𝐵 ∈ V |
| ftp.c | ⊢ 𝐶 ∈ V |
| ftp.d | ⊢ 𝑋 ∈ V |
| ftp.e | ⊢ 𝑌 ∈ V |
| ftp.f | ⊢ 𝑍 ∈ V |
| ftp.g | ⊢ 𝐴 ≠ 𝐵 |
| ftp.h | ⊢ 𝐴 ≠ 𝐶 |
| ftp.i | ⊢ 𝐵 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| ftp | ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftp.a | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | ftp.b | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | ftp.c | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | 1, 2, 3 | 3pm3.2i 1177 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) |
| 5 | ftp.d | . . 3 ⊢ 𝑋 ∈ V | |
| 6 | ftp.e | . . 3 ⊢ 𝑌 ∈ V | |
| 7 | ftp.f | . . 3 ⊢ 𝑍 ∈ V | |
| 8 | 5, 6, 7 | 3pm3.2i 1177 | . 2 ⊢ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) |
| 9 | ftp.g | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 10 | ftp.h | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
| 11 | ftp.i | . . 3 ⊢ 𝐵 ≠ 𝐶 | |
| 12 | 9, 10, 11 | 3pm3.2i 1177 | . 2 ⊢ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) |
| 13 | ftpg 5746 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}) | |
| 14 | 4, 8, 12, 13 | mp3an 1348 | 1 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 980 ∈ wcel 2167 ≠ wne 2367 Vcvv 2763 {ctp 3624 〈cop 3625 ⟶wf 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |