Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ftp | GIF version |
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.) |
Ref | Expression |
---|---|
ftp.a | ⊢ 𝐴 ∈ V |
ftp.b | ⊢ 𝐵 ∈ V |
ftp.c | ⊢ 𝐶 ∈ V |
ftp.d | ⊢ 𝑋 ∈ V |
ftp.e | ⊢ 𝑌 ∈ V |
ftp.f | ⊢ 𝑍 ∈ V |
ftp.g | ⊢ 𝐴 ≠ 𝐵 |
ftp.h | ⊢ 𝐴 ≠ 𝐶 |
ftp.i | ⊢ 𝐵 ≠ 𝐶 |
Ref | Expression |
---|---|
ftp | ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftp.a | . . 3 ⊢ 𝐴 ∈ V | |
2 | ftp.b | . . 3 ⊢ 𝐵 ∈ V | |
3 | ftp.c | . . 3 ⊢ 𝐶 ∈ V | |
4 | 1, 2, 3 | 3pm3.2i 1170 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) |
5 | ftp.d | . . 3 ⊢ 𝑋 ∈ V | |
6 | ftp.e | . . 3 ⊢ 𝑌 ∈ V | |
7 | ftp.f | . . 3 ⊢ 𝑍 ∈ V | |
8 | 5, 6, 7 | 3pm3.2i 1170 | . 2 ⊢ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) |
9 | ftp.g | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
10 | ftp.h | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
11 | ftp.i | . . 3 ⊢ 𝐵 ≠ 𝐶 | |
12 | 9, 10, 11 | 3pm3.2i 1170 | . 2 ⊢ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) |
13 | ftpg 5680 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}) | |
14 | 4, 8, 12, 13 | mp3an 1332 | 1 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉, 〈𝐶, 𝑍〉}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍} |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 973 ∈ wcel 2141 ≠ wne 2340 Vcvv 2730 {ctp 3585 〈cop 3586 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |