ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftp GIF version

Theorem ftp 5744
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a 𝐴 ∈ V
ftp.b 𝐵 ∈ V
ftp.c 𝐶 ∈ V
ftp.d 𝑋 ∈ V
ftp.e 𝑌 ∈ V
ftp.f 𝑍 ∈ V
ftp.g 𝐴𝐵
ftp.h 𝐴𝐶
ftp.i 𝐵𝐶
Assertion
Ref Expression
ftp {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3 𝐴 ∈ V
2 ftp.b . . 3 𝐵 ∈ V
3 ftp.c . . 3 𝐶 ∈ V
41, 2, 33pm3.2i 1177 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)
5 ftp.d . . 3 𝑋 ∈ V
6 ftp.e . . 3 𝑌 ∈ V
7 ftp.f . . 3 𝑍 ∈ V
85, 6, 73pm3.2i 1177 . 2 (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)
9 ftp.g . . 3 𝐴𝐵
10 ftp.h . . 3 𝐴𝐶
11 ftp.i . . 3 𝐵𝐶
129, 10, 113pm3.2i 1177 . 2 (𝐴𝐵𝐴𝐶𝐵𝐶)
13 ftpg 5743 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍})
144, 8, 12, 13mp3an 1348 1 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}
Colors of variables: wff set class
Syntax hints:  w3a 980  wcel 2164  wne 2364  Vcvv 2760  {ctp 3621  cop 3622  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator