ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftp GIF version

Theorem ftp 5776
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a 𝐴 ∈ V
ftp.b 𝐵 ∈ V
ftp.c 𝐶 ∈ V
ftp.d 𝑋 ∈ V
ftp.e 𝑌 ∈ V
ftp.f 𝑍 ∈ V
ftp.g 𝐴𝐵
ftp.h 𝐴𝐶
ftp.i 𝐵𝐶
Assertion
Ref Expression
ftp {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3 𝐴 ∈ V
2 ftp.b . . 3 𝐵 ∈ V
3 ftp.c . . 3 𝐶 ∈ V
41, 2, 33pm3.2i 1178 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)
5 ftp.d . . 3 𝑋 ∈ V
6 ftp.e . . 3 𝑌 ∈ V
7 ftp.f . . 3 𝑍 ∈ V
85, 6, 73pm3.2i 1178 . 2 (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)
9 ftp.g . . 3 𝐴𝐵
10 ftp.h . . 3 𝐴𝐶
11 ftp.i . . 3 𝐵𝐶
129, 10, 113pm3.2i 1178 . 2 (𝐴𝐵𝐴𝐶𝐵𝐶)
13 ftpg 5775 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍})
144, 8, 12, 13mp3an 1350 1 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩}:{𝐴, 𝐵, 𝐶}⟶{𝑋, 𝑌, 𝑍}
Colors of variables: wff set class
Syntax hints:  w3a 981  wcel 2177  wne 2377  Vcvv 2773  {ctp 3636  cop 3637  wf 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator