Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2irrexpqap | GIF version |
Description: There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎↑𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12134, 2logb9irrap 13689 and sqrt2cxp2logb9e3 13687. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.) |
Ref | Expression |
---|---|
2irrexpqap | ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrt2re 12117 | . 2 ⊢ (√‘2) ∈ ℝ | |
2 | 2logb9irr 13683 | . . 3 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | |
3 | eldifi 3249 | . . 3 ⊢ ((2 logb 9) ∈ (ℝ ∖ ℚ) → (2 logb 9) ∈ ℝ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 logb 9) ∈ ℝ |
5 | sqrt2irrap 12134 | . . . 4 ⊢ (𝑝 ∈ ℚ → (√‘2) # 𝑝) | |
6 | 5 | rgen 2523 | . . 3 ⊢ ∀𝑝 ∈ ℚ (√‘2) # 𝑝 |
7 | 2logb9irrap 13689 | . . . 4 ⊢ (𝑞 ∈ ℚ → (2 logb 9) # 𝑞) | |
8 | 7 | rgen 2523 | . . 3 ⊢ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 |
9 | sqrt2cxp2logb9e3 13687 | . . . 4 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | |
10 | 3z 9241 | . . . . 5 ⊢ 3 ∈ ℤ | |
11 | zq 9585 | . . . . 5 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ 3 ∈ ℚ |
13 | 9, 12 | eqeltri 2243 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ |
14 | 6, 8, 13 | 3pm3.2i 1170 | . 2 ⊢ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ) |
15 | breq1 3992 | . . . . 5 ⊢ (𝑎 = (√‘2) → (𝑎 # 𝑝 ↔ (√‘2) # 𝑝)) | |
16 | 15 | ralbidv 2470 | . . . 4 ⊢ (𝑎 = (√‘2) → (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝)) |
17 | biidd 171 | . . . 4 ⊢ (𝑎 = (√‘2) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ 𝑏 # 𝑞)) | |
18 | oveq1 5860 | . . . . 5 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
19 | 18 | eleq1d 2239 | . . . 4 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
20 | 16, 17, 19 | 3anbi123d 1307 | . . 3 ⊢ (𝑎 = (√‘2) → ((∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ))) |
21 | biidd 171 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝)) | |
22 | breq1 3992 | . . . . 5 ⊢ (𝑏 = (2 logb 9) → (𝑏 # 𝑞 ↔ (2 logb 9) # 𝑞)) | |
23 | 22 | ralbidv 2470 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞)) |
24 | oveq2 5861 | . . . . 5 ⊢ (𝑏 = (2 logb 9) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(2 logb 9))) | |
25 | 24 | eleq1d 2239 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) |
26 | 21, 23, 25 | 3anbi123d 1307 | . . 3 ⊢ (𝑏 = (2 logb 9) → ((∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ))) |
27 | 20, 26 | rspc2ev 2849 | . 2 ⊢ (((√‘2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ ∧ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ)) |
28 | 1, 4, 14, 27 | mp3an 1332 | 1 ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∖ cdif 3118 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 # cap 8500 2c2 8929 3c3 8930 9c9 8936 ℤcz 9212 ℚcq 9578 √csqrt 10960 ↑𝑐ccxp 13572 logb clogb 13655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-pre-suploc 7895 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-xor 1371 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-2o 6396 df-oadd 6399 df-er 6513 df-map 6628 df-pm 6629 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ioo 9849 df-ico 9851 df-icc 9852 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-shft 10779 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-e 11612 df-dvds 11750 df-gcd 11898 df-prm 12062 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-tx 13047 df-cncf 13352 df-limced 13419 df-dvap 13420 df-relog 13573 df-rpcxp 13574 df-logb 13656 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |