ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2irrexpqap GIF version

Theorem 2irrexpqap 15224
Description: There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12358, 2logb9irrap 15223 and sqrt2cxp2logb9e3 15221. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.)
Assertion
Ref Expression
2irrexpqap 𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎𝑐𝑏) ∈ ℚ)
Distinct variable groups:   𝑎,𝑏,𝑝   𝑞,𝑎,𝑏

Proof of Theorem 2irrexpqap
StepHypRef Expression
1 sqrt2re 12341 . 2 (√‘2) ∈ ℝ
2 2logb9irr 15217 . . 3 (2 logb 9) ∈ (ℝ ∖ ℚ)
3 eldifi 3286 . . 3 ((2 logb 9) ∈ (ℝ ∖ ℚ) → (2 logb 9) ∈ ℝ)
42, 3ax-mp 5 . 2 (2 logb 9) ∈ ℝ
5 sqrt2irrap 12358 . . . 4 (𝑝 ∈ ℚ → (√‘2) # 𝑝)
65rgen 2550 . . 3 𝑝 ∈ ℚ (√‘2) # 𝑝
7 2logb9irrap 15223 . . . 4 (𝑞 ∈ ℚ → (2 logb 9) # 𝑞)
87rgen 2550 . . 3 𝑞 ∈ ℚ (2 logb 9) # 𝑞
9 sqrt2cxp2logb9e3 15221 . . . 4 ((√‘2)↑𝑐(2 logb 9)) = 3
10 3z 9357 . . . . 5 3 ∈ ℤ
11 zq 9702 . . . . 5 (3 ∈ ℤ → 3 ∈ ℚ)
1210, 11ax-mp 5 . . . 4 3 ∈ ℚ
139, 12eqeltri 2269 . . 3 ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ
146, 8, 133pm3.2i 1177 . 2 (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)
15 breq1 4037 . . . . 5 (𝑎 = (√‘2) → (𝑎 # 𝑝 ↔ (√‘2) # 𝑝))
1615ralbidv 2497 . . . 4 (𝑎 = (√‘2) → (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝))
17 biidd 172 . . . 4 (𝑎 = (√‘2) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ 𝑏 # 𝑞))
18 oveq1 5930 . . . . 5 (𝑎 = (√‘2) → (𝑎𝑐𝑏) = ((√‘2)↑𝑐𝑏))
1918eleq1d 2265 . . . 4 (𝑎 = (√‘2) → ((𝑎𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ))
2016, 17, 193anbi123d 1323 . . 3 (𝑎 = (√‘2) → ((∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ)))
21 biidd 172 . . . 4 (𝑏 = (2 logb 9) → (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝))
22 breq1 4037 . . . . 5 (𝑏 = (2 logb 9) → (𝑏 # 𝑞 ↔ (2 logb 9) # 𝑞))
2322ralbidv 2497 . . . 4 (𝑏 = (2 logb 9) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞))
24 oveq2 5931 . . . . 5 (𝑏 = (2 logb 9) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(2 logb 9)))
2524eleq1d 2265 . . . 4 (𝑏 = (2 logb 9) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ))
2621, 23, 253anbi123d 1323 . . 3 (𝑏 = (2 logb 9) → ((∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)))
2720, 26rspc2ev 2883 . 2 (((√‘2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ ∧ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎𝑐𝑏) ∈ ℚ))
281, 4, 14, 27mp3an 1348 1 𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎𝑐𝑏) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cdif 3154   class class class wbr 4034  cfv 5259  (class class class)co 5923  cr 7880   # cap 8610  2c2 9043  3c3 9044  9c9 9050  cz 9328  cq 9695  csqrt 11163  𝑐ccxp 15103   logb clogb 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001  ax-pre-suploc 8002  ax-addf 8003  ax-mulf 8004
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-of 6136  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6593  df-map 6710  df-pm 6711  df-en 6801  df-dom 6802  df-fin 6803  df-sup 7051  df-inf 7052  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055  df-7 9056  df-8 9057  df-9 9058  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-xneg 9849  df-xadd 9850  df-ioo 9969  df-ico 9971  df-icc 9972  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-fac 10820  df-bc 10842  df-ihash 10870  df-shft 10982  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521  df-ef 11815  df-e 11816  df-dvds 11955  df-gcd 12131  df-prm 12286  df-rest 12922  df-topgen 12941  df-psmet 14109  df-xmet 14110  df-met 14111  df-bl 14112  df-mopn 14113  df-top 14244  df-topon 14257  df-bases 14289  df-ntr 14342  df-cn 14434  df-cnp 14435  df-tx 14499  df-cncf 14817  df-limced 14902  df-dvap 14903  df-relog 15104  df-rpcxp 15105  df-logb 15190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator