| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2irrexpqap | GIF version | ||
| Description: There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎↑𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12348, 2logb9irrap 15213 and sqrt2cxp2logb9e3 15211. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| 2irrexpqap | ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt2re 12331 | . 2 ⊢ (√‘2) ∈ ℝ | |
| 2 | 2logb9irr 15207 | . . 3 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | |
| 3 | eldifi 3285 | . . 3 ⊢ ((2 logb 9) ∈ (ℝ ∖ ℚ) → (2 logb 9) ∈ ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 logb 9) ∈ ℝ |
| 5 | sqrt2irrap 12348 | . . . 4 ⊢ (𝑝 ∈ ℚ → (√‘2) # 𝑝) | |
| 6 | 5 | rgen 2550 | . . 3 ⊢ ∀𝑝 ∈ ℚ (√‘2) # 𝑝 |
| 7 | 2logb9irrap 15213 | . . . 4 ⊢ (𝑞 ∈ ℚ → (2 logb 9) # 𝑞) | |
| 8 | 7 | rgen 2550 | . . 3 ⊢ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 |
| 9 | sqrt2cxp2logb9e3 15211 | . . . 4 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | |
| 10 | 3z 9355 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 11 | zq 9700 | . . . . 5 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ 3 ∈ ℚ |
| 13 | 9, 12 | eqeltri 2269 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ |
| 14 | 6, 8, 13 | 3pm3.2i 1177 | . 2 ⊢ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ) |
| 15 | breq1 4036 | . . . . 5 ⊢ (𝑎 = (√‘2) → (𝑎 # 𝑝 ↔ (√‘2) # 𝑝)) | |
| 16 | 15 | ralbidv 2497 | . . . 4 ⊢ (𝑎 = (√‘2) → (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝)) |
| 17 | biidd 172 | . . . 4 ⊢ (𝑎 = (√‘2) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ 𝑏 # 𝑞)) | |
| 18 | oveq1 5929 | . . . . 5 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
| 19 | 18 | eleq1d 2265 | . . . 4 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
| 20 | 16, 17, 19 | 3anbi123d 1323 | . . 3 ⊢ (𝑎 = (√‘2) → ((∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ))) |
| 21 | biidd 172 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝)) | |
| 22 | breq1 4036 | . . . . 5 ⊢ (𝑏 = (2 logb 9) → (𝑏 # 𝑞 ↔ (2 logb 9) # 𝑞)) | |
| 23 | 22 | ralbidv 2497 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞)) |
| 24 | oveq2 5930 | . . . . 5 ⊢ (𝑏 = (2 logb 9) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(2 logb 9))) | |
| 25 | 24 | eleq1d 2265 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) |
| 26 | 21, 23, 25 | 3anbi123d 1323 | . . 3 ⊢ (𝑏 = (2 logb 9) → ((∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ))) |
| 27 | 20, 26 | rspc2ev 2883 | . 2 ⊢ (((√‘2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ ∧ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ)) |
| 28 | 1, 4, 14, 27 | mp3an 1348 | 1 ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∖ cdif 3154 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℝcr 7878 # cap 8608 2c2 9041 3c3 9042 9c9 9048 ℤcz 9326 ℚcq 9693 √csqrt 11161 ↑𝑐ccxp 15093 logb clogb 15179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 ax-pre-suploc 8000 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-ico 9969 df-icc 9970 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-shft 10980 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 df-e 11814 df-dvds 11953 df-gcd 12121 df-prm 12276 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-tx 14489 df-cncf 14807 df-limced 14892 df-dvap 14893 df-relog 15094 df-rpcxp 15095 df-logb 15180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |