| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2irrexpqap | GIF version | ||
| Description: There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎↑𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12375, 2logb9irrap 15321 and sqrt2cxp2logb9e3 15319. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| 2irrexpqap | ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt2re 12358 | . 2 ⊢ (√‘2) ∈ ℝ | |
| 2 | 2logb9irr 15315 | . . 3 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | |
| 3 | eldifi 3286 | . . 3 ⊢ ((2 logb 9) ∈ (ℝ ∖ ℚ) → (2 logb 9) ∈ ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 logb 9) ∈ ℝ |
| 5 | sqrt2irrap 12375 | . . . 4 ⊢ (𝑝 ∈ ℚ → (√‘2) # 𝑝) | |
| 6 | 5 | rgen 2550 | . . 3 ⊢ ∀𝑝 ∈ ℚ (√‘2) # 𝑝 |
| 7 | 2logb9irrap 15321 | . . . 4 ⊢ (𝑞 ∈ ℚ → (2 logb 9) # 𝑞) | |
| 8 | 7 | rgen 2550 | . . 3 ⊢ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 |
| 9 | sqrt2cxp2logb9e3 15319 | . . . 4 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | |
| 10 | 3z 9374 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 11 | zq 9719 | . . . . 5 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ 3 ∈ ℚ |
| 13 | 9, 12 | eqeltri 2269 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ |
| 14 | 6, 8, 13 | 3pm3.2i 1177 | . 2 ⊢ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ) |
| 15 | breq1 4037 | . . . . 5 ⊢ (𝑎 = (√‘2) → (𝑎 # 𝑝 ↔ (√‘2) # 𝑝)) | |
| 16 | 15 | ralbidv 2497 | . . . 4 ⊢ (𝑎 = (√‘2) → (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝)) |
| 17 | biidd 172 | . . . 4 ⊢ (𝑎 = (√‘2) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ 𝑏 # 𝑞)) | |
| 18 | oveq1 5932 | . . . . 5 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
| 19 | 18 | eleq1d 2265 | . . . 4 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
| 20 | 16, 17, 19 | 3anbi123d 1323 | . . 3 ⊢ (𝑎 = (√‘2) → ((∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ))) |
| 21 | biidd 172 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ↔ ∀𝑝 ∈ ℚ (√‘2) # 𝑝)) | |
| 22 | breq1 4037 | . . . . 5 ⊢ (𝑏 = (2 logb 9) → (𝑏 # 𝑞 ↔ (2 logb 9) # 𝑞)) | |
| 23 | 22 | ralbidv 2497 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (∀𝑞 ∈ ℚ 𝑏 # 𝑞 ↔ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞)) |
| 24 | oveq2 5933 | . . . . 5 ⊢ (𝑏 = (2 logb 9) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(2 logb 9))) | |
| 25 | 24 | eleq1d 2265 | . . . 4 ⊢ (𝑏 = (2 logb 9) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) |
| 26 | 21, 23, 25 | 3anbi123d 1323 | . . 3 ⊢ (𝑏 = (2 logb 9) → ((∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ ((√‘2)↑𝑐𝑏) ∈ ℚ) ↔ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ))) |
| 27 | 20, 26 | rspc2ev 2883 | . 2 ⊢ (((√‘2) ∈ ℝ ∧ (2 logb 9) ∈ ℝ ∧ (∀𝑝 ∈ ℚ (√‘2) # 𝑝 ∧ ∀𝑞 ∈ ℚ (2 logb 9) # 𝑞 ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ)) |
| 28 | 1, 4, 14, 27 | mp3an 1348 | 1 ⊢ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎↑𝑐𝑏) ∈ ℚ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ∖ cdif 3154 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7897 # cap 8627 2c2 9060 3c3 9061 9c9 9067 ℤcz 9345 ℚcq 9712 √csqrt 11180 ↑𝑐ccxp 15201 logb clogb 15287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 ax-pre-suploc 8019 ax-addf 8020 ax-mulf 8021 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-xneg 9866 df-xadd 9867 df-ioo 9986 df-ico 9988 df-icc 9989 df-fz 10103 df-fzo 10237 df-fl 10379 df-mod 10434 df-seqfrec 10559 df-exp 10650 df-fac 10837 df-bc 10859 df-ihash 10887 df-shft 10999 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-clim 11463 df-sumdc 11538 df-ef 11832 df-e 11833 df-dvds 11972 df-gcd 12148 df-prm 12303 df-rest 12945 df-topgen 12964 df-psmet 14177 df-xmet 14178 df-met 14179 df-bl 14180 df-mopn 14181 df-top 14342 df-topon 14355 df-bases 14387 df-ntr 14440 df-cn 14532 df-cnp 14533 df-tx 14597 df-cncf 14915 df-limced 15000 df-dvap 15001 df-relog 15202 df-rpcxp 15203 df-logb 15288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |