Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4bc2eq6 | GIF version |
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
4bc2eq6 | ⊢ (4C2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9210 | . . . . 5 ⊢ 0 ∈ ℤ | |
2 | 4z 9229 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 2z 9227 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1170 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0le2 8955 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | 2re 8935 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 8942 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2lt4 9038 | . . . . . 6 ⊢ 2 < 4 | |
9 | 6, 7, 8 | ltleii 8009 | . . . . 5 ⊢ 2 ≤ 4 |
10 | 5, 9 | pm3.2i 270 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
11 | elfz4 9961 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
12 | 4, 10, 11 | mp2an 424 | . . 3 ⊢ 2 ∈ (0...4) |
13 | bcval2 10671 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
15 | 3nn0 9140 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
16 | facp1 10651 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
18 | df-4 8926 | . . . . . 6 ⊢ 4 = (3 + 1) | |
19 | 18 | fveq2i 5497 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
20 | 18 | oveq2i 5861 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
21 | 17, 19, 20 | 3eqtr4i 2201 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
22 | 4cn 8943 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
23 | 2cn 8936 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
24 | 2p2e4 8992 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
25 | 22, 23, 23, 24 | subaddrii 8195 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
26 | 25 | fveq2i 5497 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
27 | fac2 10652 | . . . . . . 7 ⊢ (!‘2) = 2 | |
28 | 26, 27 | eqtri 2191 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
29 | 28, 27 | oveq12i 5862 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
30 | 2t2e4 9019 | . . . . 5 ⊢ (2 · 2) = 4 | |
31 | 29, 30 | eqtri 2191 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
32 | 21, 31 | oveq12i 5862 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
33 | faccl 10656 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
35 | 34 | nncni 8875 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
36 | 4ap0 8964 | . . . . 5 ⊢ 4 # 0 | |
37 | 35, 22, 36 | divcanap4i 8663 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
38 | fac3 10653 | . . . 4 ⊢ (!‘3) = 6 | |
39 | 37, 38 | eqtri 2191 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
40 | 32, 39 | eqtri 2191 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
41 | 14, 40 | eqtri 2191 | 1 ⊢ (4C2) = 6 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5850 0cc0 7761 1c1 7762 + caddc 7764 · cmul 7766 ≤ cle 7942 − cmin 8077 / cdiv 8576 ℕcn 8865 2c2 8916 3c3 8917 4c4 8918 6c6 8920 ℕ0cn0 9122 ℤcz 9199 ...cfz 9952 !cfa 10646 Ccbc 10668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-5 8927 df-6 8928 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-fz 9953 df-seqfrec 10389 df-fac 10647 df-bc 10669 |
This theorem is referenced by: ex-bc 13723 |
Copyright terms: Public domain | W3C validator |