| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4bc2eq6 | GIF version | ||
| Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
| Ref | Expression |
|---|---|
| 4bc2eq6 | ⊢ (4C2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9382 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 2 | 4z 9401 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 2z 9399 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 4 | 1, 2, 3 | 3pm3.2i 1177 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
| 5 | 0le2 9125 | . . . . 5 ⊢ 0 ≤ 2 | |
| 6 | 2re 9105 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 9112 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2lt4 9209 | . . . . . 6 ⊢ 2 < 4 | |
| 9 | 6, 7, 8 | ltleii 8174 | . . . . 5 ⊢ 2 ≤ 4 |
| 10 | 5, 9 | pm3.2i 272 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
| 11 | elfz4 10139 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
| 12 | 4, 10, 11 | mp2an 426 | . . 3 ⊢ 2 ∈ (0...4) |
| 13 | bcval2 10893 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
| 15 | 3nn0 9312 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 16 | facp1 10873 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
| 18 | df-4 9096 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 19 | 18 | fveq2i 5578 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
| 20 | 18 | oveq2i 5954 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
| 21 | 17, 19, 20 | 3eqtr4i 2235 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
| 22 | 4cn 9113 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 23 | 2cn 9106 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 24 | 2p2e4 9162 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
| 25 | 22, 23, 23, 24 | subaddrii 8360 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
| 26 | 25 | fveq2i 5578 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
| 27 | fac2 10874 | . . . . . . 7 ⊢ (!‘2) = 2 | |
| 28 | 26, 27 | eqtri 2225 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
| 29 | 28, 27 | oveq12i 5955 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
| 30 | 2t2e4 9190 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 31 | 29, 30 | eqtri 2225 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
| 32 | 21, 31 | oveq12i 5955 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
| 33 | faccl 10878 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
| 35 | 34 | nncni 9045 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
| 36 | 4ap0 9134 | . . . . 5 ⊢ 4 # 0 | |
| 37 | 35, 22, 36 | divcanap4i 8831 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
| 38 | fac3 10875 | . . . 4 ⊢ (!‘3) = 6 | |
| 39 | 37, 38 | eqtri 2225 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
| 40 | 32, 39 | eqtri 2225 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
| 41 | 14, 40 | eqtri 2225 | 1 ⊢ (4C2) = 6 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 ≤ cle 8107 − cmin 8242 / cdiv 8744 ℕcn 9035 2c2 9086 3c3 9087 4c4 9088 6c6 9090 ℕ0cn0 9294 ℤcz 9371 ...cfz 10129 !cfa 10868 Ccbc 10890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-fz 10130 df-seqfrec 10591 df-fac 10869 df-bc 10891 |
| This theorem is referenced by: ex-bc 15598 |
| Copyright terms: Public domain | W3C validator |