| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4bc2eq6 | GIF version | ||
| Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
| Ref | Expression |
|---|---|
| 4bc2eq6 | ⊢ (4C2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9403 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 2 | 4z 9422 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 2z 9420 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 4 | 1, 2, 3 | 3pm3.2i 1178 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
| 5 | 0le2 9146 | . . . . 5 ⊢ 0 ≤ 2 | |
| 6 | 2re 9126 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 9133 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2lt4 9230 | . . . . . 6 ⊢ 2 < 4 | |
| 9 | 6, 7, 8 | ltleii 8195 | . . . . 5 ⊢ 2 ≤ 4 |
| 10 | 5, 9 | pm3.2i 272 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
| 11 | elfz4 10160 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
| 12 | 4, 10, 11 | mp2an 426 | . . 3 ⊢ 2 ∈ (0...4) |
| 13 | bcval2 10917 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
| 15 | 3nn0 9333 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 16 | facp1 10897 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
| 18 | df-4 9117 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 19 | 18 | fveq2i 5592 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
| 20 | 18 | oveq2i 5968 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
| 21 | 17, 19, 20 | 3eqtr4i 2237 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
| 22 | 4cn 9134 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 23 | 2cn 9127 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 24 | 2p2e4 9183 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
| 25 | 22, 23, 23, 24 | subaddrii 8381 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
| 26 | 25 | fveq2i 5592 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
| 27 | fac2 10898 | . . . . . . 7 ⊢ (!‘2) = 2 | |
| 28 | 26, 27 | eqtri 2227 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
| 29 | 28, 27 | oveq12i 5969 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
| 30 | 2t2e4 9211 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 31 | 29, 30 | eqtri 2227 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
| 32 | 21, 31 | oveq12i 5969 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
| 33 | faccl 10902 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
| 35 | 34 | nncni 9066 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
| 36 | 4ap0 9155 | . . . . 5 ⊢ 4 # 0 | |
| 37 | 35, 22, 36 | divcanap4i 8852 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
| 38 | fac3 10899 | . . . 4 ⊢ (!‘3) = 6 | |
| 39 | 37, 38 | eqtri 2227 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
| 40 | 32, 39 | eqtri 2227 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
| 41 | 14, 40 | eqtri 2227 | 1 ⊢ (4C2) = 6 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 0cc0 7945 1c1 7946 + caddc 7948 · cmul 7950 ≤ cle 8128 − cmin 8263 / cdiv 8765 ℕcn 9056 2c2 9107 3c3 9108 4c4 9109 6c6 9111 ℕ0cn0 9315 ℤcz 9392 ...cfz 10150 !cfa 10892 Ccbc 10914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-fz 10151 df-seqfrec 10615 df-fac 10893 df-bc 10915 |
| This theorem is referenced by: ex-bc 15804 |
| Copyright terms: Public domain | W3C validator |