![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4bc2eq6 | GIF version |
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
4bc2eq6 | ⊢ (4C2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9328 | . . . . 5 ⊢ 0 ∈ ℤ | |
2 | 4z 9347 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 2z 9345 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1177 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0le2 9072 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | 2re 9052 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 9059 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2lt4 9155 | . . . . . 6 ⊢ 2 < 4 | |
9 | 6, 7, 8 | ltleii 8122 | . . . . 5 ⊢ 2 ≤ 4 |
10 | 5, 9 | pm3.2i 272 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
11 | elfz4 10084 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
12 | 4, 10, 11 | mp2an 426 | . . 3 ⊢ 2 ∈ (0...4) |
13 | bcval2 10821 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
15 | 3nn0 9258 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
16 | facp1 10801 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
18 | df-4 9043 | . . . . . 6 ⊢ 4 = (3 + 1) | |
19 | 18 | fveq2i 5557 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
20 | 18 | oveq2i 5929 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
21 | 17, 19, 20 | 3eqtr4i 2224 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
22 | 4cn 9060 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
23 | 2cn 9053 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
24 | 2p2e4 9109 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
25 | 22, 23, 23, 24 | subaddrii 8308 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
26 | 25 | fveq2i 5557 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
27 | fac2 10802 | . . . . . . 7 ⊢ (!‘2) = 2 | |
28 | 26, 27 | eqtri 2214 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
29 | 28, 27 | oveq12i 5930 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
30 | 2t2e4 9136 | . . . . 5 ⊢ (2 · 2) = 4 | |
31 | 29, 30 | eqtri 2214 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
32 | 21, 31 | oveq12i 5930 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
33 | faccl 10806 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
35 | 34 | nncni 8992 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
36 | 4ap0 9081 | . . . . 5 ⊢ 4 # 0 | |
37 | 35, 22, 36 | divcanap4i 8778 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
38 | fac3 10803 | . . . 4 ⊢ (!‘3) = 6 | |
39 | 37, 38 | eqtri 2214 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
40 | 32, 39 | eqtri 2214 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
41 | 14, 40 | eqtri 2214 | 1 ⊢ (4C2) = 6 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 ≤ cle 8055 − cmin 8190 / cdiv 8691 ℕcn 8982 2c2 9033 3c3 9034 4c4 9035 6c6 9037 ℕ0cn0 9240 ℤcz 9317 ...cfz 10074 !cfa 10796 Ccbc 10818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-fz 10075 df-seqfrec 10519 df-fac 10797 df-bc 10819 |
This theorem is referenced by: ex-bc 15221 |
Copyright terms: Public domain | W3C validator |