| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgslem2 | GIF version | ||
| Description: The set 𝑍 of all integers with absolute value at most 1 contains {-1, 0, 1}. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgslem2.z | ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| Ref | Expression |
|---|---|
| lgslem2 | ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1z 9424 | . . 3 ⊢ -1 ∈ ℤ | |
| 2 | 1le1 8665 | . . 3 ⊢ 1 ≤ 1 | |
| 3 | fveq2 5589 | . . . . . 6 ⊢ (𝑥 = -1 → (abs‘𝑥) = (abs‘-1)) | |
| 4 | ax-1cn 8038 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 5 | 4 | absnegi 11533 | . . . . . . 7 ⊢ (abs‘-1) = (abs‘1) |
| 6 | abs1 11458 | . . . . . . 7 ⊢ (abs‘1) = 1 | |
| 7 | 5, 6 | eqtri 2227 | . . . . . 6 ⊢ (abs‘-1) = 1 |
| 8 | 3, 7 | eqtrdi 2255 | . . . . 5 ⊢ (𝑥 = -1 → (abs‘𝑥) = 1) |
| 9 | 8 | breq1d 4061 | . . . 4 ⊢ (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 10 | lgslem2.z | . . . 4 ⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 11 | 9, 10 | elrab2 2936 | . . 3 ⊢ (-1 ∈ 𝑍 ↔ (-1 ∈ ℤ ∧ 1 ≤ 1)) |
| 12 | 1, 2, 11 | mpbir2an 945 | . 2 ⊢ -1 ∈ 𝑍 |
| 13 | 0z 9403 | . . 3 ⊢ 0 ∈ ℤ | |
| 14 | 0le1 8574 | . . 3 ⊢ 0 ≤ 1 | |
| 15 | fveq2 5589 | . . . . . 6 ⊢ (𝑥 = 0 → (abs‘𝑥) = (abs‘0)) | |
| 16 | abs0 11444 | . . . . . 6 ⊢ (abs‘0) = 0 | |
| 17 | 15, 16 | eqtrdi 2255 | . . . . 5 ⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
| 18 | 17 | breq1d 4061 | . . . 4 ⊢ (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤ 1)) |
| 19 | 18, 10 | elrab2 2936 | . . 3 ⊢ (0 ∈ 𝑍 ↔ (0 ∈ ℤ ∧ 0 ≤ 1)) |
| 20 | 13, 14, 19 | mpbir2an 945 | . 2 ⊢ 0 ∈ 𝑍 |
| 21 | 1z 9418 | . . 3 ⊢ 1 ∈ ℤ | |
| 22 | fveq2 5589 | . . . . . 6 ⊢ (𝑥 = 1 → (abs‘𝑥) = (abs‘1)) | |
| 23 | 22, 6 | eqtrdi 2255 | . . . . 5 ⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
| 24 | 23 | breq1d 4061 | . . . 4 ⊢ (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤ 1)) |
| 25 | 24, 10 | elrab2 2936 | . . 3 ⊢ (1 ∈ 𝑍 ↔ (1 ∈ ℤ ∧ 1 ≤ 1)) |
| 26 | 21, 2, 25 | mpbir2an 945 | . 2 ⊢ 1 ∈ 𝑍 |
| 27 | 12, 20, 26 | 3pm3.2i 1178 | 1 ⊢ (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍) |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4051 ‘cfv 5280 0cc0 7945 1c1 7946 ≤ cle 8128 -cneg 8264 ℤcz 9392 abscabs 11383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-n0 9316 df-z 9393 df-uz 9669 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 |
| This theorem is referenced by: lgslem4 15555 lgscllem 15559 |
| Copyright terms: Public domain | W3C validator |