![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdnscsi | GIF version |
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsdnscsi | ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re 8996 | . . . 4 ⊢ 5 ∈ ℝ | |
2 | 1nn 8928 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2nn0 9191 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
4 | 5nn0 9194 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
5 | 5lt10 9516 | . . . . 5 ⊢ 5 < ;10 | |
6 | 2, 3, 4, 5 | declti 9419 | . . . 4 ⊢ 5 < ;12 |
7 | 1, 6 | gtneii 8051 | . . 3 ⊢ ;12 ≠ 5 |
8 | dsndx 12660 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
9 | scandx 12603 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
10 | 8, 9 | neeq12i 2364 | . . 3 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
11 | 7, 10 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
12 | 6re 8998 | . . . 4 ⊢ 6 ∈ ℝ | |
13 | 6nn0 9195 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
14 | 6lt10 9515 | . . . . 5 ⊢ 6 < ;10 | |
15 | 2, 3, 13, 14 | declti 9419 | . . . 4 ⊢ 6 < ;12 |
16 | 12, 15 | gtneii 8051 | . . 3 ⊢ ;12 ≠ 6 |
17 | vscandx 12609 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 8, 17 | neeq12i 2364 | . . 3 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
19 | 16, 18 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
20 | 8re 9002 | . . . 4 ⊢ 8 ∈ ℝ | |
21 | 8nn0 9197 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
22 | 8lt10 9513 | . . . . 5 ⊢ 8 < ;10 | |
23 | 2, 3, 21, 22 | declti 9419 | . . . 4 ⊢ 8 < ;12 |
24 | 20, 23 | gtneii 8051 | . . 3 ⊢ ;12 ≠ 8 |
25 | ipndx 12621 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
26 | 8, 25 | neeq12i 2364 | . . 3 ⊢ ((dist‘ndx) ≠ (·𝑖‘ndx) ↔ ;12 ≠ 8) |
27 | 24, 26 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
28 | 11, 19, 27 | 3pm3.2i 1175 | 1 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 ≠ wne 2347 ‘cfv 5216 1c1 7811 2c2 8968 5c5 8971 6c6 8972 8c8 8974 ;cdc 9382 ndxcnx 12453 Scalarcsca 12533 ·𝑠 cvsca 12534 ·𝑖cip 12535 distcds 12539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-iota 5178 df-fun 5218 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-inn 8918 df-2 8976 df-3 8977 df-4 8978 df-5 8979 df-6 8980 df-7 8981 df-8 8982 df-9 8983 df-n0 9175 df-z 9252 df-dec 9383 df-ndx 12459 df-slot 12460 df-sca 12546 df-vsca 12547 df-ip 12548 df-ds 12552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |