![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdnscsi | GIF version |
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsdnscsi | ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re 9063 | . . . 4 ⊢ 5 ∈ ℝ | |
2 | 1nn 8995 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2nn0 9260 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
4 | 5nn0 9263 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
5 | 5lt10 9585 | . . . . 5 ⊢ 5 < ;10 | |
6 | 2, 3, 4, 5 | declti 9488 | . . . 4 ⊢ 5 < ;12 |
7 | 1, 6 | gtneii 8117 | . . 3 ⊢ ;12 ≠ 5 |
8 | dsndx 12831 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
9 | scandx 12771 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
10 | 8, 9 | neeq12i 2381 | . . 3 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
11 | 7, 10 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
12 | 6re 9065 | . . . 4 ⊢ 6 ∈ ℝ | |
13 | 6nn0 9264 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
14 | 6lt10 9584 | . . . . 5 ⊢ 6 < ;10 | |
15 | 2, 3, 13, 14 | declti 9488 | . . . 4 ⊢ 6 < ;12 |
16 | 12, 15 | gtneii 8117 | . . 3 ⊢ ;12 ≠ 6 |
17 | vscandx 12777 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 8, 17 | neeq12i 2381 | . . 3 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
19 | 16, 18 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
20 | 8re 9069 | . . . 4 ⊢ 8 ∈ ℝ | |
21 | 8nn0 9266 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
22 | 8lt10 9582 | . . . . 5 ⊢ 8 < ;10 | |
23 | 2, 3, 21, 22 | declti 9488 | . . . 4 ⊢ 8 < ;12 |
24 | 20, 23 | gtneii 8117 | . . 3 ⊢ ;12 ≠ 8 |
25 | ipndx 12789 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
26 | 8, 25 | neeq12i 2381 | . . 3 ⊢ ((dist‘ndx) ≠ (·𝑖‘ndx) ↔ ;12 ≠ 8) |
27 | 24, 26 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
28 | 11, 19, 27 | 3pm3.2i 1177 | 1 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 980 ≠ wne 2364 ‘cfv 5255 1c1 7875 2c2 9035 5c5 9038 6c6 9039 8c8 9041 ;cdc 9451 ndxcnx 12618 Scalarcsca 12701 ·𝑠 cvsca 12702 ·𝑖cip 12703 distcds 12707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-ndx 12624 df-slot 12625 df-sca 12714 df-vsca 12715 df-ip 12716 df-ds 12720 |
This theorem is referenced by: sradsg 13947 |
Copyright terms: Public domain | W3C validator |