![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdnscsi | GIF version |
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsdnscsi | ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re 8998 | . . . 4 ⊢ 5 ∈ ℝ | |
2 | 1nn 8930 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2nn0 9193 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
4 | 5nn0 9196 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
5 | 5lt10 9518 | . . . . 5 ⊢ 5 < ;10 | |
6 | 2, 3, 4, 5 | declti 9421 | . . . 4 ⊢ 5 < ;12 |
7 | 1, 6 | gtneii 8053 | . . 3 ⊢ ;12 ≠ 5 |
8 | dsndx 12666 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
9 | scandx 12609 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
10 | 8, 9 | neeq12i 2364 | . . 3 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
11 | 7, 10 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
12 | 6re 9000 | . . . 4 ⊢ 6 ∈ ℝ | |
13 | 6nn0 9197 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
14 | 6lt10 9517 | . . . . 5 ⊢ 6 < ;10 | |
15 | 2, 3, 13, 14 | declti 9421 | . . . 4 ⊢ 6 < ;12 |
16 | 12, 15 | gtneii 8053 | . . 3 ⊢ ;12 ≠ 6 |
17 | vscandx 12615 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 8, 17 | neeq12i 2364 | . . 3 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
19 | 16, 18 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
20 | 8re 9004 | . . . 4 ⊢ 8 ∈ ℝ | |
21 | 8nn0 9199 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
22 | 8lt10 9515 | . . . . 5 ⊢ 8 < ;10 | |
23 | 2, 3, 21, 22 | declti 9421 | . . . 4 ⊢ 8 < ;12 |
24 | 20, 23 | gtneii 8053 | . . 3 ⊢ ;12 ≠ 8 |
25 | ipndx 12627 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
26 | 8, 25 | neeq12i 2364 | . . 3 ⊢ ((dist‘ndx) ≠ (·𝑖‘ndx) ↔ ;12 ≠ 8) |
27 | 24, 26 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
28 | 11, 19, 27 | 3pm3.2i 1175 | 1 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 ≠ wne 2347 ‘cfv 5217 1c1 7812 2c2 8970 5c5 8973 6c6 8974 8c8 8976 ;cdc 9384 ndxcnx 12459 Scalarcsca 12539 ·𝑠 cvsca 12540 ·𝑖cip 12541 distcds 12545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-iota 5179 df-fun 5219 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-7 8983 df-8 8984 df-9 8985 df-n0 9177 df-z 9254 df-dec 9385 df-ndx 12465 df-slot 12466 df-sca 12552 df-vsca 12553 df-ip 12554 df-ds 12558 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |