Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > slotsdnscsi | GIF version |
Description: The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
slotsdnscsi | ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5re 8969 | . . . 4 ⊢ 5 ∈ ℝ | |
2 | 1nn 8901 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2nn0 9164 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
4 | 5nn0 9167 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
5 | 5lt10 9489 | . . . . 5 ⊢ 5 < ;10 | |
6 | 2, 3, 4, 5 | declti 9392 | . . . 4 ⊢ 5 < ;12 |
7 | 1, 6 | gtneii 8027 | . . 3 ⊢ ;12 ≠ 5 |
8 | dsndx 12598 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
9 | scandx 12557 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
10 | 8, 9 | neeq12i 2362 | . . 3 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
11 | 7, 10 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
12 | 6re 8971 | . . . 4 ⊢ 6 ∈ ℝ | |
13 | 6nn0 9168 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
14 | 6lt10 9488 | . . . . 5 ⊢ 6 < ;10 | |
15 | 2, 3, 13, 14 | declti 9392 | . . . 4 ⊢ 6 < ;12 |
16 | 12, 15 | gtneii 8027 | . . 3 ⊢ ;12 ≠ 6 |
17 | vscandx 12563 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
18 | 8, 17 | neeq12i 2362 | . . 3 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
19 | 16, 18 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
20 | 8re 8975 | . . . 4 ⊢ 8 ∈ ℝ | |
21 | 8nn0 9170 | . . . . 5 ⊢ 8 ∈ ℕ0 | |
22 | 8lt10 9486 | . . . . 5 ⊢ 8 < ;10 | |
23 | 2, 3, 21, 22 | declti 9392 | . . . 4 ⊢ 8 < ;12 |
24 | 20, 23 | gtneii 8027 | . . 3 ⊢ ;12 ≠ 8 |
25 | ipndx 12571 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
26 | 8, 25 | neeq12i 2362 | . . 3 ⊢ ((dist‘ndx) ≠ (·𝑖‘ndx) ↔ ;12 ≠ 8) |
27 | 24, 26 | mpbir 146 | . 2 ⊢ (dist‘ndx) ≠ (·𝑖‘ndx) |
28 | 11, 19, 27 | 3pm3.2i 1175 | 1 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 ≠ wne 2345 ‘cfv 5208 1c1 7787 2c2 8941 5c5 8944 6c6 8945 8c8 8947 ;cdc 9355 ndxcnx 12425 Scalarcsca 12495 ·𝑠 cvsca 12496 ·𝑖cip 12497 distcds 12501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-6 8953 df-7 8954 df-8 8955 df-9 8956 df-n0 9148 df-z 9225 df-dec 9356 df-ndx 12431 df-slot 12432 df-sca 12508 df-vsca 12509 df-ip 12510 df-ds 12514 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |