| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftuz | GIF version | ||
| Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftuz | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2517 | . 2 ⊢ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} | |
| 2 | simp2 1022 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ ℂ) | |
| 3 | zcn 9439 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 4 | 3 | 3ad2ant1 1042 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝐴 ∈ ℂ) |
| 5 | 2, 4 | npcand 8449 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
| 6 | eluzadd 9739 | . . . . . . . . 9 ⊢ (((𝑥 − 𝐴) ∈ (ℤ≥‘𝐵) ∧ 𝐴 ∈ ℤ) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) | |
| 7 | 6 | ancoms 268 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
| 8 | 7 | 3adant2 1040 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
| 9 | 5, 8 | eqeltrrd 2307 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) |
| 10 | 9 | 3expib 1230 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
| 12 | eluzelcn 9721 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ) | |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ)) |
| 14 | eluzsub 9740 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) | |
| 15 | 14 | 3expia 1229 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
| 16 | 15 | ancoms 268 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
| 17 | 13, 16 | jcad 307 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)))) |
| 18 | 11, 17 | impbid 129 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) ↔ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
| 19 | 18 | abbi1dv 2349 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} = (ℤ≥‘(𝐵 + 𝐴))) |
| 20 | 1, 19 | eqtrid 2274 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {cab 2215 {crab 2512 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 + caddc 7990 − cmin 8305 ℤcz 9434 ℤ≥cuz 9710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 |
| This theorem is referenced by: seq3shft 11335 |
| Copyright terms: Public domain | W3C validator |