![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > shftuz | GIF version |
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftuz | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2379 | . 2 ⊢ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} | |
2 | simp2 947 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ ℂ) | |
3 | zcn 8853 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
4 | 3 | 3ad2ant1 967 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝐴 ∈ ℂ) |
5 | 2, 4 | npcand 7894 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
6 | eluzadd 9146 | . . . . . . . . 9 ⊢ (((𝑥 − 𝐴) ∈ (ℤ≥‘𝐵) ∧ 𝐴 ∈ ℤ) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) | |
7 | 6 | ancoms 265 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
8 | 7 | 3adant2 965 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
9 | 5, 8 | eqeltrrd 2172 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) |
10 | 9 | 3expib 1149 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
11 | 10 | adantr 271 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
12 | eluzelcn 9129 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ) | |
13 | 12 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ)) |
14 | eluzsub 9147 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) | |
15 | 14 | 3expia 1148 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
16 | 15 | ancoms 265 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
17 | 13, 16 | jcad 302 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)))) |
18 | 11, 17 | impbid 128 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) ↔ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
19 | 18 | abbi1dv 2214 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} = (ℤ≥‘(𝐵 + 𝐴))) |
20 | 1, 19 | syl5eq 2139 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 927 = wceq 1296 ∈ wcel 1445 {cab 2081 {crab 2374 ‘cfv 5049 (class class class)co 5690 ℂcc 7445 + caddc 7450 − cmin 7750 ℤcz 8848 ℤ≥cuz 9118 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 df-uz 9119 |
This theorem is referenced by: seq3shft 10403 |
Copyright terms: Public domain | W3C validator |