| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftuz | GIF version | ||
| Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftuz | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2484 | . 2 ⊢ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} | |
| 2 | simp2 1000 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ ℂ) | |
| 3 | zcn 9348 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 4 | 3 | 3ad2ant1 1020 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝐴 ∈ ℂ) |
| 5 | 2, 4 | npcand 8358 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
| 6 | eluzadd 9647 | . . . . . . . . 9 ⊢ (((𝑥 − 𝐴) ∈ (ℤ≥‘𝐵) ∧ 𝐴 ∈ ℤ) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) | |
| 7 | 6 | ancoms 268 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
| 8 | 7 | 3adant2 1018 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → ((𝑥 − 𝐴) + 𝐴) ∈ (ℤ≥‘(𝐵 + 𝐴))) |
| 9 | 5, 8 | eqeltrrd 2274 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) |
| 10 | 9 | 3expib 1208 | . . . . 5 ⊢ (𝐴 ∈ ℤ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) → 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
| 12 | eluzelcn 9629 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ) | |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ)) |
| 14 | eluzsub 9648 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴))) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) | |
| 15 | 14 | 3expia 1207 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
| 16 | 15 | ancoms 268 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))) |
| 17 | 13, 16 | jcad 307 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)) → (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)))) |
| 18 | 11, 17 | impbid 129 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)) ↔ 𝑥 ∈ (ℤ≥‘(𝐵 + 𝐴)))) |
| 19 | 18 | abbi1dv 2316 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵))} = (ℤ≥‘(𝐵 + 𝐴))) |
| 20 | 1, 19 | eqtrid 2241 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 {cab 2182 {crab 2479 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 + caddc 7899 − cmin 8214 ℤcz 9343 ℤ≥cuz 9618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: seq3shft 11020 |
| Copyright terms: Public domain | W3C validator |