ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftuz GIF version

Theorem shftuz 10826
Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
shftuz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = (ℤ‘(𝐵 + 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem shftuz
StepHypRef Expression
1 df-rab 2464 . 2 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵))}
2 simp2 998 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ ℂ)
3 zcn 9258 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
433ad2ant1 1018 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝐴 ∈ ℂ)
52, 4npcand 8272 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → ((𝑥𝐴) + 𝐴) = 𝑥)
6 eluzadd 9556 . . . . . . . . 9 (((𝑥𝐴) ∈ (ℤ𝐵) ∧ 𝐴 ∈ ℤ) → ((𝑥𝐴) + 𝐴) ∈ (ℤ‘(𝐵 + 𝐴)))
76ancoms 268 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → ((𝑥𝐴) + 𝐴) ∈ (ℤ‘(𝐵 + 𝐴)))
873adant2 1016 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → ((𝑥𝐴) + 𝐴) ∈ (ℤ‘(𝐵 + 𝐴)))
95, 8eqeltrrd 2255 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ (ℤ‘(𝐵 + 𝐴)))
1093expib 1206 . . . . 5 (𝐴 ∈ ℤ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))))
1110adantr 276 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) → 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))))
12 eluzelcn 9539 . . . . . 6 (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ)
1312a1i 9 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → 𝑥 ∈ ℂ))
14 eluzsub 9557 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))) → (𝑥𝐴) ∈ (ℤ𝐵))
15143expia 1205 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → (𝑥𝐴) ∈ (ℤ𝐵)))
1615ancoms 268 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → (𝑥𝐴) ∈ (ℤ𝐵)))
1713, 16jcad 307 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐵 + 𝐴)) → (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵))))
1811, 17impbid 129 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵)) ↔ 𝑥 ∈ (ℤ‘(𝐵 + 𝐴))))
1918abbi1dv 2297 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ (ℤ𝐵))} = (ℤ‘(𝐵 + 𝐴)))
201, 19eqtrid 2222 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ (ℤ𝐵)} = (ℤ‘(𝐵 + 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  {cab 2163  {crab 2459  cfv 5217  (class class class)co 5875  cc 7809   + caddc 7814  cmin 8128  cz 9253  cuz 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529
This theorem is referenced by:  seq3shft  10847
  Copyright terms: Public domain W3C validator