ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleqf GIF version

Theorem cleqf 2372
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2304. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2198 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1550 . . 3 𝑦(𝑥𝐴𝑥𝐵)
3 cleqf.1 . . . . 5 𝑥𝐴
43nfcri 2341 . . . 4 𝑥 𝑦𝐴
5 cleqf.2 . . . . 5 𝑥𝐵
65nfcri 2341 . . . 4 𝑥 𝑦𝐵
74, 6nfbi 1611 . . 3 𝑥(𝑦𝐴𝑦𝐵)
8 eleq1 2267 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
9 eleq1 2267 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108, 9bibi12d 235 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
112, 7, 10cbval 1776 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
121, 11bitr4i 187 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1370   = wceq 1372  wcel 2175  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336
This theorem is referenced by:  abid2f  2373  n0rf  3472  eq0  3478  iunab  3973  iinab  3988  sniota  5261
  Copyright terms: Public domain W3C validator