![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > poltletr | GIF version |
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
poltletr | ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poleloe 5066 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3ad2ant3 1022 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) |
3 | 2 | adantl 277 | . . 3 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) |
4 | 3 | anbi2d 464 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)))) |
5 | potr 4340 | . . . . 5 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | |
6 | 5 | com12 30 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
7 | breq2 4034 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) | |
8 | 7 | biimpac 298 | . . . . 5 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → 𝐴𝑅𝐶) |
9 | 8 | a1d 22 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
10 | 6, 9 | jaodan 798 | . . 3 ⊢ ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
11 | 10 | com12 30 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → 𝐴𝑅𝐶)) |
12 | 4, 11 | sylbid 150 | 1 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 class class class wbr 4030 I cid 4320 Po wpo 4326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-xp 4666 df-rel 4667 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |