![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > poltletr | GIF version |
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
poltletr | ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poleloe 4786 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3ad2ant3 962 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) |
3 | 2 | adantl 271 | . . 3 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) |
4 | 3 | anbi2d 452 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)))) |
5 | potr 4099 | . . . . 5 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | |
6 | 5 | com12 30 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
7 | breq2 3815 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) | |
8 | 7 | biimpac 292 | . . . . 5 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → 𝐴𝑅𝐶) |
9 | 8 | a1d 22 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
10 | 6, 9 | jaodan 744 | . . 3 ⊢ ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
11 | 10 | com12 30 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → 𝐴𝑅𝐶)) |
12 | 4, 11 | sylbid 148 | 1 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 662 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ∪ cun 2982 class class class wbr 3811 I cid 4079 Po wpo 4085 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-br 3812 df-opab 3866 df-id 4084 df-po 4087 df-xp 4407 df-rel 4408 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |