ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poltletr GIF version

Theorem poltletr 4939
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 4938 . . . . 5 (𝐶𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
213ad2ant3 1004 . . . 4 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
32adantl 275 . . 3 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶𝐵 = 𝐶)))
43anbi2d 459 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶))))
5 potr 4230 . . . . 5 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
65com12 30 . . . 4 ((𝐴𝑅𝐵𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
7 breq2 3933 . . . . . 6 (𝐵 = 𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
87biimpac 296 . . . . 5 ((𝐴𝑅𝐵𝐵 = 𝐶) → 𝐴𝑅𝐶)
98a1d 22 . . . 4 ((𝐴𝑅𝐵𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
106, 9jaodan 786 . . 3 ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑅𝐶))
1110com12 30 . 2 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶𝐵 = 𝐶)) → 𝐴𝑅𝐶))
124, 11sylbid 149 1 ((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  cun 3069   class class class wbr 3929   I cid 4210   Po wpo 4216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-xp 4545  df-rel 4546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator