| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpac | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimpac |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimpcd 159 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: gencbvex2 2820 ordtri2or2exmidlem 4575 onsucelsucexmidlem 4578 ordsuc 4612 onsucuni2 4613 poltletr 5084 tz6.12-1 5605 nfunsn 5613 nnaordex 6616 th3qlem1 6726 ssfilem 6974 diffitest 6986 nqnq0pi 7553 distrlem1prl 7697 distrlem1pru 7698 eqle 8166 swrd0g 11116 flodddiv4 12280 zabsle1 15509 |
| Copyright terms: Public domain | W3C validator |