ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpac Unicode version

Theorem biimpac 298
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimpac  |-  ( ( ps  /\  ph )  ->  ch )

Proof of Theorem biimpac
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimpcd 159 . 2  |-  ( ps 
->  ( ph  ->  ch ) )
32imp 124 1  |-  ( ( ps  /\  ph )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  gencbvex2  2848  ordtri2or2exmidlem  4618  onsucelsucexmidlem  4621  ordsuc  4655  onsucuni2  4656  poltletr  5129  tz6.12-1  5654  nfunsn  5664  nnaordex  6674  th3qlem1  6784  ssfilem  7037  diffitest  7049  nqnq0pi  7625  distrlem1prl  7769  distrlem1pru  7770  eqle  8238  swrd0g  11192  flodddiv4  12447  zabsle1  15678
  Copyright terms: Public domain W3C validator