Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimpac | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
Ref | Expression |
---|---|
biimpac |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 | |
2 | 1 | biimpcd 158 | . 2 |
3 | 2 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: gencbvex2 2777 ordtri2or2exmidlem 4508 onsucelsucexmidlem 4511 ordsuc 4545 onsucuni2 4546 poltletr 5009 tz6.12-1 5521 nfunsn 5528 nnaordex 6504 th3qlem1 6612 ssfilem 6850 diffitest 6862 nqnq0pi 7389 distrlem1prl 7533 distrlem1pru 7534 eqle 8000 flodddiv4 11882 zabsle1 13655 |
Copyright terms: Public domain | W3C validator |