| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpac | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimpac |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimpcd 159 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: gencbvex2 2811 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 ordsuc 4600 onsucuni2 4601 poltletr 5071 tz6.12-1 5588 nfunsn 5596 nnaordex 6595 th3qlem1 6705 ssfilem 6945 diffitest 6957 nqnq0pi 7522 distrlem1prl 7666 distrlem1pru 7667 eqle 8135 flodddiv4 12118 zabsle1 15324 |
| Copyright terms: Public domain | W3C validator |