| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimpac | Unicode version | ||
| Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
| Ref | Expression |
|---|---|
| biimpa.1 |
|
| Ref | Expression |
|---|---|
| biimpac |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpa.1 |
. . 3
| |
| 2 | 1 | biimpcd 159 |
. 2
|
| 3 | 2 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: gencbvex2 2848 ordtri2or2exmidlem 4618 onsucelsucexmidlem 4621 ordsuc 4655 onsucuni2 4656 poltletr 5129 tz6.12-1 5654 nfunsn 5664 nnaordex 6674 th3qlem1 6784 ssfilem 7037 diffitest 7049 nqnq0pi 7625 distrlem1prl 7769 distrlem1pru 7770 eqle 8238 swrd0g 11192 flodddiv4 12447 zabsle1 15678 |
| Copyright terms: Public domain | W3C validator |