ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimpac Unicode version

Theorem biimpac 298
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.)
Hypothesis
Ref Expression
biimpa.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
biimpac  |-  ( ( ps  /\  ph )  ->  ch )

Proof of Theorem biimpac
StepHypRef Expression
1 biimpa.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21biimpcd 159 . 2  |-  ( ps 
->  ( ph  ->  ch ) )
32imp 124 1  |-  ( ( ps  /\  ph )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  gencbvex2  2820  ordtri2or2exmidlem  4575  onsucelsucexmidlem  4578  ordsuc  4612  onsucuni2  4613  poltletr  5084  tz6.12-1  5605  nfunsn  5613  nnaordex  6616  th3qlem1  6726  ssfilem  6974  diffitest  6986  nqnq0pi  7553  distrlem1prl  7697  distrlem1pru  7698  eqle  8166  swrd0g  11116  flodddiv4  12280  zabsle1  15509
  Copyright terms: Public domain W3C validator