![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpac | Unicode version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpac |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpcd 159 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | imp 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: gencbvex2 2808 ordtri2or2exmidlem 4559 onsucelsucexmidlem 4562 ordsuc 4596 onsucuni2 4597 poltletr 5067 tz6.12-1 5582 nfunsn 5590 nnaordex 6583 th3qlem1 6693 ssfilem 6933 diffitest 6945 nqnq0pi 7500 distrlem1prl 7644 distrlem1pru 7645 eqle 8113 flodddiv4 12078 zabsle1 15156 |
Copyright terms: Public domain | W3C validator |