ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfilem GIF version

Theorem ssfilem 6735
Description: Lemma for ssfiexmid 6736. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
ssfilem.1 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
Assertion
Ref Expression
ssfilem (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑧

Proof of Theorem ssfilem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfilem.1 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2 isfi 6621 . . 3 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ↔ ∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛)
31, 2mpbi 144 . 2 𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛
4 0elnn 4500 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
5 breq2 3901 . . . . . . . . . 10 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅))
6 en0 6655 . . . . . . . . . 10 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
75, 6syl6bb 195 . . . . . . . . 9 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
87biimpac 294 . . . . . . . 8 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
9 rabeq0 3360 . . . . . . . . 9 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
10 0ex 4023 . . . . . . . . . . 11 ∅ ∈ V
1110snm 3611 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
12 r19.3rmv 3421 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑))
1311, 12ax-mp 5 . . . . . . . . 9 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
149, 13bitr4i 186 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ¬ 𝜑)
158, 14sylib 121 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → ¬ 𝜑)
1615olcd 706 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → (𝜑 ∨ ¬ 𝜑))
17 ensym 6641 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑})
18 elex2 2674 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑥 𝑥𝑛)
19 enm 6680 . . . . . . . 8 ((𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∃𝑥 𝑥𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
2017, 18, 19syl2an 285 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
21 biidd 171 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝜑𝜑))
2221elrab 2811 . . . . . . . . . 10 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (𝑦 ∈ {∅} ∧ 𝜑))
2322simprbi 271 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2423orcd 705 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2524exlimiv 1560 . . . . . . 7 (∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2620, 25syl 14 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
2716, 26jaodan 769 . . . . 5 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (𝜑 ∨ ¬ 𝜑))
284, 27sylan2 282 . . . 4 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ∈ ω) → (𝜑 ∨ ¬ 𝜑))
2928ancoms 266 . . 3 ((𝑛 ∈ ω ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
3029rexlimiva 2519 . 2 (∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 → (𝜑 ∨ ¬ 𝜑))
313, 30ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 680   = wceq 1314  wex 1451  wcel 1463  wral 2391  wrex 2392  {crab 2395  c0 3331  {csn 3495   class class class wbr 3897  ωcom 4472  cen 6598  Fincfn 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-id 4183  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-er 6395  df-en 6601  df-fin 6603
This theorem is referenced by:  ssfiexmid  6736  domfiexmid  6738
  Copyright terms: Public domain W3C validator