| Step | Hyp | Ref
| Expression |
| 1 | | ssfilem.1 |
. . 3
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin |
| 2 | | isfi 6820 |
. . 3
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ↔ ∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) |
| 3 | 1, 2 | mpbi 145 |
. 2
⊢
∃𝑛 ∈
ω {𝑧 ∈ {∅}
∣ 𝜑} ≈ 𝑛 |
| 4 | | 0elnn 4655 |
. . . . 5
⊢ (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈
𝑛)) |
| 5 | | breq2 4037 |
. . . . . . . . . 10
⊢ (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅)) |
| 6 | | en0 6854 |
. . . . . . . . . 10
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅) |
| 7 | 5, 6 | bitrdi 196 |
. . . . . . . . 9
⊢ (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)) |
| 8 | 7 | biimpac 298 |
. . . . . . . 8
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 = ∅) → {𝑧 ∈ {∅} ∣ 𝜑} = ∅) |
| 9 | | rabeq0 3480 |
. . . . . . . . 9
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ {∅} ¬ 𝜑) |
| 10 | | 0ex 4160 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 11 | 10 | snm 3742 |
. . . . . . . . . 10
⊢
∃𝑤 𝑤 ∈
{∅} |
| 12 | | r19.3rmv 3541 |
. . . . . . . . . 10
⊢
(∃𝑤 𝑤 ∈ {∅} → (¬
𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
⊢ (¬
𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑) |
| 14 | 9, 13 | bitr4i 187 |
. . . . . . . 8
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ¬ 𝜑) |
| 15 | 8, 14 | sylib 122 |
. . . . . . 7
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 = ∅) → ¬ 𝜑) |
| 16 | 15 | olcd 735 |
. . . . . 6
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 = ∅) → (𝜑 ∨ ¬ 𝜑)) |
| 17 | | ensym 6840 |
. . . . . . . 8
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 → 𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑}) |
| 18 | | elex2 2779 |
. . . . . . . 8
⊢ (∅
∈ 𝑛 →
∃𝑥 𝑥 ∈ 𝑛) |
| 19 | | enm 6879 |
. . . . . . . 8
⊢ ((𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∃𝑥 𝑥 ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
| 20 | 17, 18, 19 | syl2an 289 |
. . . . . . 7
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
| 21 | | biidd 172 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜑)) |
| 22 | 21 | elrab 2920 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (𝑦 ∈ {∅} ∧ 𝜑)) |
| 23 | 22 | simprbi 275 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑) |
| 24 | 23 | orcd 734 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑)) |
| 25 | 24 | exlimiv 1612 |
. . . . . . 7
⊢
(∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑)) |
| 26 | 20, 25 | syl 14 |
. . . . . 6
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (𝜑 ∨ ¬ 𝜑)) |
| 27 | 16, 26 | jaodan 798 |
. . . . 5
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (𝜑 ∨ ¬ 𝜑)) |
| 28 | 4, 27 | sylan2 286 |
. . . 4
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 ∈ ω) → (𝜑 ∨ ¬ 𝜑)) |
| 29 | 28 | ancoms 268 |
. . 3
⊢ ((𝑛 ∈ ω ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) → (𝜑 ∨ ¬ 𝜑)) |
| 30 | 29 | rexlimiva 2609 |
. 2
⊢
(∃𝑛 ∈
ω {𝑧 ∈ {∅}
∣ 𝜑} ≈ 𝑛 → (𝜑 ∨ ¬ 𝜑)) |
| 31 | 3, 30 | ax-mp 5 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |