Step | Hyp | Ref
| Expression |
1 | | ssfilem.1 |
. . 3
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin |
2 | | isfi 6703 |
. . 3
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ↔ ∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) |
3 | 1, 2 | mpbi 144 |
. 2
⊢
∃𝑛 ∈
ω {𝑧 ∈ {∅}
∣ 𝜑} ≈ 𝑛 |
4 | | 0elnn 4577 |
. . . . 5
⊢ (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈
𝑛)) |
5 | | breq2 3969 |
. . . . . . . . . 10
⊢ (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅)) |
6 | | en0 6737 |
. . . . . . . . . 10
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅) |
7 | 5, 6 | bitrdi 195 |
. . . . . . . . 9
⊢ (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)) |
8 | 7 | biimpac 296 |
. . . . . . . 8
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 = ∅) → {𝑧 ∈ {∅} ∣ 𝜑} = ∅) |
9 | | rabeq0 3423 |
. . . . . . . . 9
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ {∅} ¬ 𝜑) |
10 | | 0ex 4091 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
11 | 10 | snm 3679 |
. . . . . . . . . 10
⊢
∃𝑤 𝑤 ∈
{∅} |
12 | | r19.3rmv 3484 |
. . . . . . . . . 10
⊢
(∃𝑤 𝑤 ∈ {∅} → (¬
𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)) |
13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
⊢ (¬
𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑) |
14 | 9, 13 | bitr4i 186 |
. . . . . . . 8
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ¬ 𝜑) |
15 | 8, 14 | sylib 121 |
. . . . . . 7
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 = ∅) → ¬ 𝜑) |
16 | 15 | olcd 724 |
. . . . . 6
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 = ∅) → (𝜑 ∨ ¬ 𝜑)) |
17 | | ensym 6723 |
. . . . . . . 8
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 → 𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑}) |
18 | | elex2 2728 |
. . . . . . . 8
⊢ (∅
∈ 𝑛 →
∃𝑥 𝑥 ∈ 𝑛) |
19 | | enm 6762 |
. . . . . . . 8
⊢ ((𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∃𝑥 𝑥 ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
20 | 17, 18, 19 | syl2an 287 |
. . . . . . 7
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
21 | | biidd 171 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜑)) |
22 | 21 | elrab 2868 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (𝑦 ∈ {∅} ∧ 𝜑)) |
23 | 22 | simprbi 273 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑) |
24 | 23 | orcd 723 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑)) |
25 | 24 | exlimiv 1578 |
. . . . . . 7
⊢
(∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑)) |
26 | 20, 25 | syl 14 |
. . . . . 6
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (𝜑 ∨ ¬ 𝜑)) |
27 | 16, 26 | jaodan 787 |
. . . . 5
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (𝜑 ∨ ¬ 𝜑)) |
28 | 4, 27 | sylan2 284 |
. . . 4
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ 𝑛 ∈ ω) → (𝜑 ∨ ¬ 𝜑)) |
29 | 28 | ancoms 266 |
. . 3
⊢ ((𝑛 ∈ ω ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) → (𝜑 ∨ ¬ 𝜑)) |
30 | 29 | rexlimiva 2569 |
. 2
⊢
(∃𝑛 ∈
ω {𝑧 ∈ {∅}
∣ 𝜑} ≈ 𝑛 → (𝜑 ∨ ¬ 𝜑)) |
31 | 3, 30 | ax-mp 5 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |