ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfilem GIF version

Theorem ssfilem 6945
Description: Lemma for ssfiexmid 6946. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
ssfilem.1 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
Assertion
Ref Expression
ssfilem (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑧

Proof of Theorem ssfilem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfilem.1 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2 isfi 6829 . . 3 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ↔ ∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛)
31, 2mpbi 145 . 2 𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛
4 0elnn 4656 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
5 breq2 4038 . . . . . . . . . 10 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅))
6 en0 6863 . . . . . . . . . 10 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
75, 6bitrdi 196 . . . . . . . . 9 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
87biimpac 298 . . . . . . . 8 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
9 rabeq0 3481 . . . . . . . . 9 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
10 0ex 4161 . . . . . . . . . . 11 ∅ ∈ V
1110snm 3743 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
12 r19.3rmv 3542 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑))
1311, 12ax-mp 5 . . . . . . . . 9 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
149, 13bitr4i 187 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ¬ 𝜑)
158, 14sylib 122 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → ¬ 𝜑)
1615olcd 735 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → (𝜑 ∨ ¬ 𝜑))
17 ensym 6849 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑})
18 elex2 2779 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑥 𝑥𝑛)
19 enm 6888 . . . . . . . 8 ((𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∃𝑥 𝑥𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
2017, 18, 19syl2an 289 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
21 biidd 172 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝜑𝜑))
2221elrab 2920 . . . . . . . . . 10 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (𝑦 ∈ {∅} ∧ 𝜑))
2322simprbi 275 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2423orcd 734 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2524exlimiv 1612 . . . . . . 7 (∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2620, 25syl 14 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
2716, 26jaodan 798 . . . . 5 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (𝜑 ∨ ¬ 𝜑))
284, 27sylan2 286 . . . 4 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ∈ ω) → (𝜑 ∨ ¬ 𝜑))
2928ancoms 268 . . 3 ((𝑛 ∈ ω ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
3029rexlimiva 2609 . 2 (∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 → (𝜑 ∨ ¬ 𝜑))
313, 30ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  c0 3451  {csn 3623   class class class wbr 4034  ωcom 4627  cen 6806  Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-er 6601  df-en 6809  df-fin 6811
This theorem is referenced by:  ssfiexmid  6946  domfiexmid  6948
  Copyright terms: Public domain W3C validator