ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfilem GIF version

Theorem ssfilem 6853
Description: Lemma for ssfiexmid 6854. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
ssfilem.1 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
Assertion
Ref Expression
ssfilem (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑧

Proof of Theorem ssfilem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfilem.1 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2 isfi 6739 . . 3 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin ↔ ∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛)
31, 2mpbi 144 . 2 𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛
4 0elnn 4603 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
5 breq2 3993 . . . . . . . . . 10 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅))
6 en0 6773 . . . . . . . . . 10 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
75, 6bitrdi 195 . . . . . . . . 9 (𝑛 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
87biimpac 296 . . . . . . . 8 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → {𝑧 ∈ {∅} ∣ 𝜑} = ∅)
9 rabeq0 3444 . . . . . . . . 9 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
10 0ex 4116 . . . . . . . . . . 11 ∅ ∈ V
1110snm 3703 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
12 r19.3rmv 3505 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑))
1311, 12ax-mp 5 . . . . . . . . 9 𝜑 ↔ ∀𝑧 ∈ {∅} ¬ 𝜑)
149, 13bitr4i 186 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ↔ ¬ 𝜑)
158, 14sylib 121 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → ¬ 𝜑)
1615olcd 729 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 = ∅) → (𝜑 ∨ ¬ 𝜑))
17 ensym 6759 . . . . . . . 8 ({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑})
18 elex2 2746 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑥 𝑥𝑛)
19 enm 6798 . . . . . . . 8 ((𝑛 ≈ {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∃𝑥 𝑥𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
2017, 18, 19syl2an 287 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})
21 biidd 171 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝜑𝜑))
2221elrab 2886 . . . . . . . . . 10 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ (𝑦 ∈ {∅} ∧ 𝜑))
2322simprbi 273 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2423orcd 728 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2524exlimiv 1591 . . . . . . 7 (∃𝑦 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} → (𝜑 ∨ ¬ 𝜑))
2620, 25syl 14 . . . . . 6 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
2716, 26jaodan 792 . . . . 5 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (𝜑 ∨ ¬ 𝜑))
284, 27sylan2 284 . . . 4 (({𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛𝑛 ∈ ω) → (𝜑 ∨ ¬ 𝜑))
2928ancoms 266 . . 3 ((𝑛 ∈ ω ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛) → (𝜑 ∨ ¬ 𝜑))
3029rexlimiva 2582 . 2 (∃𝑛 ∈ ω {𝑧 ∈ {∅} ∣ 𝜑} ≈ 𝑛 → (𝜑 ∨ ¬ 𝜑))
313, 30ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 703   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449  {crab 2452  c0 3414  {csn 3583   class class class wbr 3989  ωcom 4574  cen 6716  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  ssfiexmid  6854  domfiexmid  6856
  Copyright terms: Public domain W3C validator