ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem GIF version

Theorem onsucelsucexmidlem 4439
Description: Lemma for onsucelsucexmid 4440. The set {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} appears as 𝐴 in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5758), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4430. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
Distinct variable group:   𝜑,𝑥

Proof of Theorem onsucelsucexmidlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . . . . . 8 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦𝑧)
2 noel 3362 . . . . . . . . . 10 ¬ 𝑦 ∈ ∅
3 eleq2 2201 . . . . . . . . . 10 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
42, 3mtbiri 664 . . . . . . . . 9 (𝑧 = ∅ → ¬ 𝑦𝑧)
54adantl 275 . . . . . . . 8 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → ¬ 𝑦𝑧)
61, 5pm2.21dd 609 . . . . . . 7 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
76ex 114 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
8 eleq2 2201 . . . . . . . . . . 11 (𝑧 = {∅} → (𝑦𝑧𝑦 ∈ {∅}))
98biimpac 296 . . . . . . . . . 10 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {∅})
10 velsn 3539 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10sylib 121 . . . . . . . . 9 ((𝑦𝑧𝑧 = {∅}) → 𝑦 = ∅)
12 onsucelsucexmidlem1 4438 . . . . . . . . 9 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
1311, 12syl6eqel 2228 . . . . . . . 8 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
1413ex 114 . . . . . . 7 (𝑦𝑧 → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
1514adantr 274 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
16 elrabi 2832 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → 𝑧 ∈ {∅, {∅}})
17 vex 2684 . . . . . . . . 9 𝑧 ∈ V
1817elpr 3543 . . . . . . . 8 (𝑧 ∈ {∅, {∅}} ↔ (𝑧 = ∅ ∨ 𝑧 = {∅}))
1916, 18sylib 121 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑧 = ∅ ∨ 𝑧 = {∅}))
2019adantl 275 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
217, 15, 20mpjaod 707 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
2221gen2 1426 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
23 dftr2 4023 . . . 4 (Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
2422, 23mpbir 145 . . 3 Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
25 ssrab2 3177 . . 3 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ⊆ {∅, {∅}}
26 2ordpr 4434 . . 3 Ord {∅, {∅}}
27 trssord 4297 . . 3 ((Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∧ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ⊆ {∅, {∅}} ∧ Ord {∅, {∅}}) → Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
2824, 25, 26, 27mp3an 1315 . 2 Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
29 pp0ex 4108 . . . 4 {∅, {∅}} ∈ V
3029rabex 4067 . . 3 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ V
3130elon 4291 . 2 ({𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On ↔ Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
3228, 31mpbir 145 1 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  wal 1329   = wceq 1331  wcel 1480  {crab 2418  wss 3066  c0 3358  {csn 3522  {cpr 3523  Tr wtr 4021  Ord word 4279  Oncon0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288
This theorem is referenced by:  onsucelsucexmid  4440  acexmidlemcase  5762  acexmidlemv  5765
  Copyright terms: Public domain W3C validator