ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem GIF version

Theorem onsucelsucexmidlem 4575
Description: Lemma for onsucelsucexmid 4576. The set {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} appears as 𝐴 in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5925), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4565. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
Distinct variable group:   𝜑,𝑥

Proof of Theorem onsucelsucexmidlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦𝑧)
2 noel 3463 . . . . . . . . . 10 ¬ 𝑦 ∈ ∅
3 eleq2 2268 . . . . . . . . . 10 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
42, 3mtbiri 676 . . . . . . . . 9 (𝑧 = ∅ → ¬ 𝑦𝑧)
54adantl 277 . . . . . . . 8 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → ¬ 𝑦𝑧)
61, 5pm2.21dd 621 . . . . . . 7 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
76ex 115 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
8 eleq2 2268 . . . . . . . . . . 11 (𝑧 = {∅} → (𝑦𝑧𝑦 ∈ {∅}))
98biimpac 298 . . . . . . . . . 10 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {∅})
10 velsn 3649 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10sylib 122 . . . . . . . . 9 ((𝑦𝑧𝑧 = {∅}) → 𝑦 = ∅)
12 onsucelsucexmidlem1 4574 . . . . . . . . 9 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
1311, 12eqeltrdi 2295 . . . . . . . 8 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
1413ex 115 . . . . . . 7 (𝑦𝑧 → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
1514adantr 276 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
16 elrabi 2925 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → 𝑧 ∈ {∅, {∅}})
17 vex 2774 . . . . . . . . 9 𝑧 ∈ V
1817elpr 3653 . . . . . . . 8 (𝑧 ∈ {∅, {∅}} ↔ (𝑧 = ∅ ∨ 𝑧 = {∅}))
1916, 18sylib 122 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑧 = ∅ ∨ 𝑧 = {∅}))
2019adantl 277 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
217, 15, 20mpjaod 719 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
2221gen2 1472 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
23 dftr2 4143 . . . 4 (Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
2422, 23mpbir 146 . . 3 Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
25 ssrab2 3277 . . 3 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ⊆ {∅, {∅}}
26 2ordpr 4570 . . 3 Ord {∅, {∅}}
27 trssord 4425 . . 3 ((Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∧ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ⊆ {∅, {∅}} ∧ Ord {∅, {∅}}) → Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
2824, 25, 26, 27mp3an 1349 . 2 Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
29 pp0ex 4232 . . . 4 {∅, {∅}} ∈ V
3029rabex 4187 . . 3 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ V
3130elon 4419 . 2 ({𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On ↔ Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
3228, 31mpbir 146 1 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  wal 1370   = wceq 1372  wcel 2175  {crab 2487  wss 3165  c0 3459  {csn 3632  {cpr 3633  Tr wtr 4141  Ord word 4407  Oncon0 4408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-tr 4142  df-iord 4411  df-on 4413  df-suc 4416
This theorem is referenced by:  onsucelsucexmid  4576  acexmidlemcase  5929  acexmidlemv  5932
  Copyright terms: Public domain W3C validator