ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucelsucexmidlem GIF version

Theorem onsucelsucexmidlem 4565
Description: Lemma for onsucelsucexmid 4566. The set {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} appears as 𝐴 in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5913), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4555. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onsucelsucexmidlem {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
Distinct variable group:   𝜑,𝑥

Proof of Theorem onsucelsucexmidlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . 8 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦𝑧)
2 noel 3454 . . . . . . . . . 10 ¬ 𝑦 ∈ ∅
3 eleq2 2260 . . . . . . . . . 10 (𝑧 = ∅ → (𝑦𝑧𝑦 ∈ ∅))
42, 3mtbiri 676 . . . . . . . . 9 (𝑧 = ∅ → ¬ 𝑦𝑧)
54adantl 277 . . . . . . . 8 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → ¬ 𝑦𝑧)
61, 5pm2.21dd 621 . . . . . . 7 (((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) ∧ 𝑧 = ∅) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
76ex 115 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
8 eleq2 2260 . . . . . . . . . . 11 (𝑧 = {∅} → (𝑦𝑧𝑦 ∈ {∅}))
98biimpac 298 . . . . . . . . . 10 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {∅})
10 velsn 3639 . . . . . . . . . 10 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
119, 10sylib 122 . . . . . . . . 9 ((𝑦𝑧𝑧 = {∅}) → 𝑦 = ∅)
12 onsucelsucexmidlem1 4564 . . . . . . . . 9 ∅ ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
1311, 12eqeltrdi 2287 . . . . . . . 8 ((𝑦𝑧𝑧 = {∅}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
1413ex 115 . . . . . . 7 (𝑦𝑧 → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
1514adantr 276 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = {∅} → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
16 elrabi 2917 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → 𝑧 ∈ {∅, {∅}})
17 vex 2766 . . . . . . . . 9 𝑧 ∈ V
1817elpr 3643 . . . . . . . 8 (𝑧 ∈ {∅, {∅}} ↔ (𝑧 = ∅ ∨ 𝑧 = {∅}))
1916, 18sylib 122 . . . . . . 7 (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} → (𝑧 = ∅ ∨ 𝑧 = {∅}))
2019adantl 277 . . . . . 6 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → (𝑧 = ∅ ∨ 𝑧 = {∅}))
217, 15, 20mpjaod 719 . . . . 5 ((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
2221gen2 1464 . . . 4 𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
23 dftr2 4133 . . . 4 (Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ∀𝑦𝑧((𝑦𝑧𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}))
2422, 23mpbir 146 . . 3 Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
25 ssrab2 3268 . . 3 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ⊆ {∅, {∅}}
26 2ordpr 4560 . . 3 Ord {∅, {∅}}
27 trssord 4415 . . 3 ((Tr {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∧ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ⊆ {∅, {∅}} ∧ Ord {∅, {∅}}) → Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
2824, 25, 26, 27mp3an 1348 . 2 Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
29 pp0ex 4222 . . . 4 {∅, {∅}} ∈ V
3029rabex 4177 . . 3 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ V
3130elon 4409 . 2 ({𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On ↔ Ord {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
3228, 31mpbir 146 1 {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ∈ On
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  wal 1362   = wceq 1364  wcel 2167  {crab 2479  wss 3157  c0 3450  {csn 3622  {cpr 3623  Tr wtr 4131  Ord word 4397  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  onsucelsucexmid  4566  acexmidlemcase  5917  acexmidlemv  5920
  Copyright terms: Public domain W3C validator