| Step | Hyp | Ref
| Expression |
| 1 | | ordsucim 4537 |
. 2
⊢ (Ord
𝐴 → Ord suc 𝐴) |
| 2 | | en2lp 4591 |
. . . . . . . . . 10
⊢ ¬
(𝑥 ∈ 𝐴 ∧ 𝐴 ∈ 𝑥) |
| 3 | | eleq1 2259 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
| 4 | 3 | biimpac 298 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴) → 𝐴 ∈ 𝑥) |
| 5 | 4 | anim2i 342 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴)) → (𝑥 ∈ 𝐴 ∧ 𝐴 ∈ 𝑥)) |
| 6 | 5 | expr 375 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑦 = 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝐴 ∈ 𝑥))) |
| 7 | 2, 6 | mtoi 665 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 = 𝐴) |
| 8 | 7 | adantl 277 |
. . . . . . . 8
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → ¬ 𝑦 = 𝐴) |
| 9 | | elelsuc 4445 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ suc 𝐴) |
| 10 | 9 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ suc 𝐴) |
| 11 | | ordelss 4415 |
. . . . . . . . . . . . . 14
⊢ ((Ord suc
𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ⊆ suc 𝐴) |
| 12 | 10, 11 | sylan2 286 |
. . . . . . . . . . . . 13
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → 𝑥 ⊆ suc 𝐴) |
| 13 | 12 | sseld 3183 |
. . . . . . . . . . . 12
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ suc 𝐴)) |
| 14 | 13 | expr 375 |
. . . . . . . . . . 11
⊢ ((Ord suc
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ∈ suc 𝐴))) |
| 15 | 14 | pm2.43d 50 |
. . . . . . . . . 10
⊢ ((Ord suc
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝑥 → 𝑦 ∈ suc 𝐴)) |
| 16 | 15 | impr 379 |
. . . . . . . . 9
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ suc 𝐴) |
| 17 | | elsuci 4439 |
. . . . . . . . 9
⊢ (𝑦 ∈ suc 𝐴 → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
| 18 | 16, 17 | syl 14 |
. . . . . . . 8
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
| 19 | 8, 18 | ecased 1360 |
. . . . . . 7
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ 𝐴) |
| 20 | 19 | ancom2s 566 |
. . . . . 6
⊢ ((Ord suc
𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
| 21 | 20 | ex 115 |
. . . . 5
⊢ (Ord suc
𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 22 | 21 | alrimivv 1889 |
. . . 4
⊢ (Ord suc
𝐴 → ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 23 | | dftr2 4134 |
. . . 4
⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
| 24 | 22, 23 | sylibr 134 |
. . 3
⊢ (Ord suc
𝐴 → Tr 𝐴) |
| 25 | | sssucid 4451 |
. . . 4
⊢ 𝐴 ⊆ suc 𝐴 |
| 26 | | trssord 4416 |
. . . 4
⊢ ((Tr
𝐴 ∧ 𝐴 ⊆ suc 𝐴 ∧ Ord suc 𝐴) → Ord 𝐴) |
| 27 | 25, 26 | mp3an2 1336 |
. . 3
⊢ ((Tr
𝐴 ∧ Ord suc 𝐴) → Ord 𝐴) |
| 28 | 24, 27 | mpancom 422 |
. 2
⊢ (Ord suc
𝐴 → Ord 𝐴) |
| 29 | 1, 28 | impbii 126 |
1
⊢ (Ord
𝐴 ↔ Ord suc 𝐴) |