Step | Hyp | Ref
| Expression |
1 | | ordsucim 4484 |
. 2
⊢ (Ord
𝐴 → Ord suc 𝐴) |
2 | | en2lp 4538 |
. . . . . . . . . 10
⊢ ¬
(𝑥 ∈ 𝐴 ∧ 𝐴 ∈ 𝑥) |
3 | | eleq1 2233 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
4 | 3 | biimpac 296 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴) → 𝐴 ∈ 𝑥) |
5 | 4 | anim2i 340 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴)) → (𝑥 ∈ 𝐴 ∧ 𝐴 ∈ 𝑥)) |
6 | 5 | expr 373 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑦 = 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝐴 ∈ 𝑥))) |
7 | 2, 6 | mtoi 659 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 = 𝐴) |
8 | 7 | adantl 275 |
. . . . . . . 8
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → ¬ 𝑦 = 𝐴) |
9 | | elelsuc 4394 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ suc 𝐴) |
10 | 9 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ suc 𝐴) |
11 | | ordelss 4364 |
. . . . . . . . . . . . . 14
⊢ ((Ord suc
𝐴 ∧ 𝑥 ∈ suc 𝐴) → 𝑥 ⊆ suc 𝐴) |
12 | 10, 11 | sylan2 284 |
. . . . . . . . . . . . 13
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → 𝑥 ⊆ suc 𝐴) |
13 | 12 | sseld 3146 |
. . . . . . . . . . . 12
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ 𝑥 → 𝑦 ∈ suc 𝐴)) |
14 | 13 | expr 373 |
. . . . . . . . . . 11
⊢ ((Ord suc
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑥 → 𝑦 ∈ suc 𝐴))) |
15 | 14 | pm2.43d 50 |
. . . . . . . . . 10
⊢ ((Ord suc
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝑥 → 𝑦 ∈ suc 𝐴)) |
16 | 15 | impr 377 |
. . . . . . . . 9
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ suc 𝐴) |
17 | | elsuci 4388 |
. . . . . . . . 9
⊢ (𝑦 ∈ suc 𝐴 → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
18 | 16, 17 | syl 14 |
. . . . . . . 8
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
19 | 8, 18 | ecased 1344 |
. . . . . . 7
⊢ ((Ord suc
𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ 𝐴) |
20 | 19 | ancom2s 561 |
. . . . . 6
⊢ ((Ord suc
𝐴 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
21 | 20 | ex 114 |
. . . . 5
⊢ (Ord suc
𝐴 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
22 | 21 | alrimivv 1868 |
. . . 4
⊢ (Ord suc
𝐴 → ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
23 | | dftr2 4089 |
. . . 4
⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
24 | 22, 23 | sylibr 133 |
. . 3
⊢ (Ord suc
𝐴 → Tr 𝐴) |
25 | | sssucid 4400 |
. . . 4
⊢ 𝐴 ⊆ suc 𝐴 |
26 | | trssord 4365 |
. . . 4
⊢ ((Tr
𝐴 ∧ 𝐴 ⊆ suc 𝐴 ∧ Ord suc 𝐴) → Ord 𝐴) |
27 | 25, 26 | mp3an2 1320 |
. . 3
⊢ ((Tr
𝐴 ∧ Ord suc 𝐴) → Ord 𝐴) |
28 | 24, 27 | mpancom 420 |
. 2
⊢ (Ord suc
𝐴 → Ord 𝐴) |
29 | 1, 28 | impbii 125 |
1
⊢ (Ord
𝐴 ↔ Ord suc 𝐴) |