ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsuc GIF version

Theorem ordsuc 4540
Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.)
Assertion
Ref Expression
ordsuc (Ord 𝐴 ↔ Ord suc 𝐴)

Proof of Theorem ordsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordsucim 4477 . 2 (Ord 𝐴 → Ord suc 𝐴)
2 en2lp 4531 . . . . . . . . . 10 ¬ (𝑥𝐴𝐴𝑥)
3 eleq1 2229 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
43biimpac 296 . . . . . . . . . . . 12 ((𝑦𝑥𝑦 = 𝐴) → 𝐴𝑥)
54anim2i 340 . . . . . . . . . . 11 ((𝑥𝐴 ∧ (𝑦𝑥𝑦 = 𝐴)) → (𝑥𝐴𝐴𝑥))
65expr 373 . . . . . . . . . 10 ((𝑥𝐴𝑦𝑥) → (𝑦 = 𝐴 → (𝑥𝐴𝐴𝑥)))
72, 6mtoi 654 . . . . . . . . 9 ((𝑥𝐴𝑦𝑥) → ¬ 𝑦 = 𝐴)
87adantl 275 . . . . . . . 8 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → ¬ 𝑦 = 𝐴)
9 elelsuc 4387 . . . . . . . . . . . . . . 15 (𝑥𝐴𝑥 ∈ suc 𝐴)
109adantr 274 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑦𝑥) → 𝑥 ∈ suc 𝐴)
11 ordelss 4357 . . . . . . . . . . . . . 14 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ⊆ suc 𝐴)
1210, 11sylan2 284 . . . . . . . . . . . . 13 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → 𝑥 ⊆ suc 𝐴)
1312sseld 3141 . . . . . . . . . . . 12 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → (𝑦𝑥𝑦 ∈ suc 𝐴))
1413expr 373 . . . . . . . . . . 11 ((Ord suc 𝐴𝑥𝐴) → (𝑦𝑥 → (𝑦𝑥𝑦 ∈ suc 𝐴)))
1514pm2.43d 50 . . . . . . . . . 10 ((Ord suc 𝐴𝑥𝐴) → (𝑦𝑥𝑦 ∈ suc 𝐴))
1615impr 377 . . . . . . . . 9 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦 ∈ suc 𝐴)
17 elsuci 4381 . . . . . . . . 9 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
1816, 17syl 14 . . . . . . . 8 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → (𝑦𝐴𝑦 = 𝐴))
198, 18ecased 1339 . . . . . . 7 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
2019ancom2s 556 . . . . . 6 ((Ord suc 𝐴 ∧ (𝑦𝑥𝑥𝐴)) → 𝑦𝐴)
2120ex 114 . . . . 5 (Ord suc 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2221alrimivv 1863 . . . 4 (Ord suc 𝐴 → ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
23 dftr2 4082 . . . 4 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2422, 23sylibr 133 . . 3 (Ord suc 𝐴 → Tr 𝐴)
25 sssucid 4393 . . . 4 𝐴 ⊆ suc 𝐴
26 trssord 4358 . . . 4 ((Tr 𝐴𝐴 ⊆ suc 𝐴 ∧ Ord suc 𝐴) → Ord 𝐴)
2725, 26mp3an2 1315 . . 3 ((Tr 𝐴 ∧ Ord suc 𝐴) → Ord 𝐴)
2824, 27mpancom 419 . 2 (Ord suc 𝐴 → Ord 𝐴)
291, 28impbii 125 1 (Ord 𝐴 ↔ Ord suc 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  wal 1341   = wceq 1343  wcel 2136  wss 3116  Tr wtr 4080  Ord word 4340  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-suc 4349
This theorem is referenced by:  nlimsucg  4543  ordpwsucss  4544
  Copyright terms: Public domain W3C validator