ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordex GIF version

Theorem nnaordex 6672
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnaordex
Dummy variables 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2293 . . . . . 6 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
2 eqeq2 2239 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = 𝐵))
32anbi2d 464 . . . . . . 7 (𝑏 = 𝐵 → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
43rexbidv 2531 . . . . . 6 (𝑏 = 𝐵 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
51, 4imbi12d 234 . . . . 5 (𝑏 = 𝐵 → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
65imbi2d 230 . . . 4 (𝑏 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏))) ↔ (𝐴 ∈ ω → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))))
7 eleq2 2293 . . . . . 6 (𝑏 = ∅ → (𝐴𝑏𝐴 ∈ ∅))
8 eqeq2 2239 . . . . . . . 8 (𝑏 = ∅ → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = ∅))
98anbi2d 464 . . . . . . 7 (𝑏 = ∅ → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = ∅)))
109rexbidv 2531 . . . . . 6 (𝑏 = ∅ → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = ∅)))
117, 10imbi12d 234 . . . . 5 (𝑏 = ∅ → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = ∅))))
12 eleq2 2293 . . . . . 6 (𝑏 = 𝑦 → (𝐴𝑏𝐴𝑦))
13 eqeq2 2239 . . . . . . . 8 (𝑏 = 𝑦 → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = 𝑦))
1413anbi2d 464 . . . . . . 7 (𝑏 = 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)))
1514rexbidv 2531 . . . . . 6 (𝑏 = 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)))
1612, 15imbi12d 234 . . . . 5 (𝑏 = 𝑦 → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))))
17 eleq2 2293 . . . . . 6 (𝑏 = suc 𝑦 → (𝐴𝑏𝐴 ∈ suc 𝑦))
18 eqeq2 2239 . . . . . . . 8 (𝑏 = suc 𝑦 → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = suc 𝑦))
1918anbi2d 464 . . . . . . 7 (𝑏 = suc 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
2019rexbidv 2531 . . . . . 6 (𝑏 = suc 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
2117, 20imbi12d 234 . . . . 5 (𝑏 = suc 𝑦 → ((𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))))
22 noel 3495 . . . . . . 7 ¬ 𝐴 ∈ ∅
2322pm2.21i 649 . . . . . 6 (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = ∅))
2423a1i 9 . . . . 5 (𝐴 ∈ ω → (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = ∅)))
25 elsuci 4493 . . . . . . 7 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
26 simpr 110 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)))
27 peano2 4686 . . . . . . . . . . . . . . 15 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
2827ad2antlr 489 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → suc 𝑥 ∈ ω)
29 elelsuc 4499 . . . . . . . . . . . . . . . . 17 (∅ ∈ 𝑥 → ∅ ∈ suc 𝑥)
3029a1i 9 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥 → ∅ ∈ suc 𝑥))
31 nnasuc 6620 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
32 suceq 4492 . . . . . . . . . . . . . . . . . 18 ((𝐴 +o 𝑥) = 𝑦 → suc (𝐴 +o 𝑥) = suc 𝑦)
3331, 32sylan9eq 2282 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (𝐴 +o 𝑥) = 𝑦) → (𝐴 +o suc 𝑥) = suc 𝑦)
3433ex 115 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝑦 → (𝐴 +o suc 𝑥) = suc 𝑦))
3530, 34anim12d 335 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦) → (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = suc 𝑦)))
3635imp 124 . . . . . . . . . . . . . 14 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = suc 𝑦))
37 eleq2 2293 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ suc 𝑥))
38 oveq2 6008 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑥 → (𝐴 +o 𝑧) = (𝐴 +o suc 𝑥))
3938eqeq1d 2238 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑥 → ((𝐴 +o 𝑧) = suc 𝑦 ↔ (𝐴 +o suc 𝑥) = suc 𝑦))
4037, 39anbi12d 473 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦) ↔ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = suc 𝑦)))
4140rspcev 2907 . . . . . . . . . . . . . 14 ((suc 𝑥 ∈ ω ∧ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = suc 𝑦)) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦))
4228, 36, 41syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦))
4342ex 115 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦)))
4443rexlimdva 2648 . . . . . . . . . . 11 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦)))
45 eleq2 2293 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ 𝑥))
46 oveq2 6008 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝐴 +o 𝑧) = (𝐴 +o 𝑥))
4746eqeq1d 2238 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝐴 +o 𝑧) = suc 𝑦 ↔ (𝐴 +o 𝑥) = suc 𝑦))
4845, 47anbi12d 473 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
4948cbvrexv 2766 . . . . . . . . . . 11 (∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))
5044, 49imbitrdi 161 . . . . . . . . . 10 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
5150ad2antlr 489 . . . . . . . . 9 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
5226, 51syld 45 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
53 0lt1o 6584 . . . . . . . . . . . 12 ∅ ∈ 1o
5453a1i 9 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∅ ∈ 1o)
55 nnon 4701 . . . . . . . . . . . . 13 (𝐴 ∈ ω → 𝐴 ∈ On)
56 oa1suc 6611 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐴 +o 1o) = suc 𝐴)
5755, 56syl 14 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐴 +o 1o) = suc 𝐴)
58 suceq 4492 . . . . . . . . . . . 12 (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦)
5957, 58sylan9eq 2282 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → (𝐴 +o 1o) = suc 𝑦)
60 1onn 6664 . . . . . . . . . . . 12 1o ∈ ω
61 eleq2 2293 . . . . . . . . . . . . . 14 (𝑥 = 1o → (∅ ∈ 𝑥 ↔ ∅ ∈ 1o))
62 oveq2 6008 . . . . . . . . . . . . . . 15 (𝑥 = 1o → (𝐴 +o 𝑥) = (𝐴 +o 1o))
6362eqeq1d 2238 . . . . . . . . . . . . . 14 (𝑥 = 1o → ((𝐴 +o 𝑥) = suc 𝑦 ↔ (𝐴 +o 1o) = suc 𝑦))
6461, 63anbi12d 473 . . . . . . . . . . . . 13 (𝑥 = 1o → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦) ↔ (∅ ∈ 1o ∧ (𝐴 +o 1o) = suc 𝑦)))
6564rspcev 2907 . . . . . . . . . . . 12 ((1o ∈ ω ∧ (∅ ∈ 1o ∧ (𝐴 +o 1o) = suc 𝑦)) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))
6660, 65mpan 424 . . . . . . . . . . 11 ((∅ ∈ 1o ∧ (𝐴 +o 1o) = suc 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))
6754, 59, 66syl2anc 411 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))
6867ex 115 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
6968ad2antlr 489 . . . . . . . 8 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
7052, 69jaod 722 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → ((𝐴𝑦𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
7125, 70syl5 32 . . . . . 6 (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))
7271exp31 364 . . . . 5 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))))
7311, 16, 21, 24, 72finds2 4692 . . . 4 (𝑏 ∈ ω → (𝐴 ∈ ω → (𝐴𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏))))
746, 73vtoclga 2867 . . 3 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
7574impcom 125 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
76 peano1 4685 . . . . . . . . 9 ∅ ∈ ω
77 nnaord 6653 . . . . . . . . 9 ((∅ ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝑥)))
7876, 77mp3an1 1358 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝑥)))
7978ancoms 268 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝑥)))
80 nna0 6618 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
8180adantr 276 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o ∅) = 𝐴)
8281eleq1d 2298 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝑥) ↔ 𝐴 ∈ (𝐴 +o 𝑥)))
8379, 82bitrd 188 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +o 𝑥)))
8483anbi1d 465 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝐴 ∈ (𝐴 +o 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵)))
85 eleq2 2293 . . . . . 6 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
8685biimpac 298 . . . . 5 ((𝐴 ∈ (𝐴 +o 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵)
8784, 86biimtrdi 163 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
8887rexlimdva 2648 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
8988adantr 276 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
9075, 89impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wrex 2509  c0 3491  Oncon0 4453  suc csuc 4455  ωcom 4681  (class class class)co 6000  1oc1o 6553   +o coa 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-oadd 6564
This theorem is referenced by:  nnawordex  6673  ltexpi  7520
  Copyright terms: Public domain W3C validator