| Step | Hyp | Ref
 | Expression | 
| 1 |   | eleq2 2260 | 
. . . . . 6
⊢ (𝑏 = 𝐵 → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ 𝐵)) | 
| 2 |   | eqeq2 2206 | 
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = 𝐵)) | 
| 3 | 2 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | 
| 4 | 3 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑏 = 𝐵 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | 
| 5 | 1, 4 | imbi12d 234 | 
. . . . 5
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))) | 
| 6 | 5 | imbi2d 230 | 
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏))) ↔ (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))) | 
| 7 |   | eleq2 2260 | 
. . . . . 6
⊢ (𝑏 = ∅ → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ ∅)) | 
| 8 |   | eqeq2 2206 | 
. . . . . . . 8
⊢ (𝑏 = ∅ → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = ∅)) | 
| 9 | 8 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑏 = ∅ → ((∅
∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = ∅))) | 
| 10 | 9 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑏 = ∅ → (∃𝑥 ∈ ω (∅ ∈
𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = ∅))) | 
| 11 | 7, 10 | imbi12d 234 | 
. . . . 5
⊢ (𝑏 = ∅ → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴 ∈ ∅ → ∃𝑥 ∈ ω (∅ ∈
𝑥 ∧ (𝐴 +o 𝑥) = ∅)))) | 
| 12 |   | eleq2 2260 | 
. . . . . 6
⊢ (𝑏 = 𝑦 → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ 𝑦)) | 
| 13 |   | eqeq2 2206 | 
. . . . . . . 8
⊢ (𝑏 = 𝑦 → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = 𝑦)) | 
| 14 | 13 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑏 = 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) | 
| 15 | 14 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑏 = 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) | 
| 16 | 12, 15 | imbi12d 234 | 
. . . . 5
⊢ (𝑏 = 𝑦 → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)))) | 
| 17 |   | eleq2 2260 | 
. . . . . 6
⊢ (𝑏 = suc 𝑦 → (𝐴 ∈ 𝑏 ↔ 𝐴 ∈ suc 𝑦)) | 
| 18 |   | eqeq2 2206 | 
. . . . . . . 8
⊢ (𝑏 = suc 𝑦 → ((𝐴 +o 𝑥) = 𝑏 ↔ (𝐴 +o 𝑥) = suc 𝑦)) | 
| 19 | 18 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑏 = suc 𝑦 → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 20 | 19 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑏 = suc 𝑦 → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 21 | 17, 20 | imbi12d 234 | 
. . . . 5
⊢ (𝑏 = suc 𝑦 → ((𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)) ↔ (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)))) | 
| 22 |   | noel 3454 | 
. . . . . . 7
⊢  ¬
𝐴 ∈
∅ | 
| 23 | 22 | pm2.21i 647 | 
. . . . . 6
⊢ (𝐴 ∈ ∅ →
∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = ∅)) | 
| 24 | 23 | a1i 9 | 
. . . . 5
⊢ (𝐴 ∈ ω → (𝐴 ∈ ∅ →
∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = ∅))) | 
| 25 |   | elsuci 4438 | 
. . . . . . 7
⊢ (𝐴 ∈ suc 𝑦 → (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦)) | 
| 26 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) | 
| 27 |   | peano2 4631 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) | 
| 28 | 27 | ad2antlr 489 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅
∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → suc 𝑥 ∈ ω) | 
| 29 |   | elelsuc 4444 | 
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ 𝑥 → ∅
∈ suc 𝑥) | 
| 30 | 29 | a1i 9 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅
∈ 𝑥 → ∅
∈ suc 𝑥)) | 
| 31 |   | nnasuc 6534 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥)) | 
| 32 |   | suceq 4437 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 +o 𝑥) = 𝑦 → suc (𝐴 +o 𝑥) = suc 𝑦) | 
| 33 | 31, 32 | sylan9eq 2249 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (𝐴 +o 𝑥) = 𝑦) → (𝐴 +o suc 𝑥) = suc 𝑦) | 
| 34 | 33 | ex 115 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝑦 → (𝐴 +o suc 𝑥) = suc 𝑦)) | 
| 35 | 30, 34 | anim12d 335 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝑦) → (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = suc 𝑦))) | 
| 36 | 35 | imp 124 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅
∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = suc 𝑦)) | 
| 37 |   | eleq2 2260 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ suc 𝑥)) | 
| 38 |   | oveq2 5930 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = suc 𝑥 → (𝐴 +o 𝑧) = (𝐴 +o suc 𝑥)) | 
| 39 | 38 | eqeq1d 2205 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑥 → ((𝐴 +o 𝑧) = suc 𝑦 ↔ (𝐴 +o suc 𝑥) = suc 𝑦)) | 
| 40 | 37, 39 | anbi12d 473 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦) ↔ (∅ ∈ suc 𝑥 ∧ (𝐴 +o suc 𝑥) = suc 𝑦))) | 
| 41 | 40 | rspcev 2868 | 
. . . . . . . . . . . . . 14
⊢ ((suc
𝑥 ∈ ω ∧
(∅ ∈ suc 𝑥 ∧
(𝐴 +o suc 𝑥) = suc 𝑦)) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦)) | 
| 42 | 28, 36, 41 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ (∅
∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦)) | 
| 43 | 42 | ex 115 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦))) | 
| 44 | 43 | rexlimdva 2614 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝑦) → ∃𝑧 ∈ ω (∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦))) | 
| 45 |   | eleq2 2260 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (∅ ∈ 𝑧 ↔ ∅ ∈ 𝑥)) | 
| 46 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝐴 +o 𝑧) = (𝐴 +o 𝑥)) | 
| 47 | 46 | eqeq1d 2205 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝐴 +o 𝑧) = suc 𝑦 ↔ (𝐴 +o 𝑥) = suc 𝑦)) | 
| 48 | 45, 47 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → ((∅ ∈ 𝑧 ∧ (𝐴 +o 𝑧) = suc 𝑦) ↔ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 49 | 48 | cbvrexv 2730 | 
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ω (∅ ∈ 𝑧
∧ (𝐴 +o
𝑧) = suc 𝑦) ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)) | 
| 50 | 44, 49 | imbitrdi 161 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ω →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 51 | 50 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 52 | 26, 51 | syld 45 | 
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 53 |   | 0lt1o 6498 | 
. . . . . . . . . . . 12
⊢ ∅
∈ 1o | 
| 54 | 53 | a1i 9 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∅ ∈
1o) | 
| 55 |   | nnon 4646 | 
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | 
| 56 |   | oa1suc 6525 | 
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (𝐴 +o 1o) =
suc 𝐴) | 
| 57 | 55, 56 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → (𝐴 +o 1o) =
suc 𝐴) | 
| 58 |   | suceq 4437 | 
. . . . . . . . . . . 12
⊢ (𝐴 = 𝑦 → suc 𝐴 = suc 𝑦) | 
| 59 | 57, 58 | sylan9eq 2249 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → (𝐴 +o 1o) = suc 𝑦) | 
| 60 |   | 1onn 6578 | 
. . . . . . . . . . . 12
⊢
1o ∈ ω | 
| 61 |   | eleq2 2260 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1o → (∅
∈ 𝑥 ↔ ∅
∈ 1o)) | 
| 62 |   | oveq2 5930 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 1o → (𝐴 +o 𝑥) = (𝐴 +o
1o)) | 
| 63 | 62 | eqeq1d 2205 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1o → ((𝐴 +o 𝑥) = suc 𝑦 ↔ (𝐴 +o 1o) = suc 𝑦)) | 
| 64 | 61, 63 | anbi12d 473 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 1o →
((∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = suc 𝑦) ↔ (∅ ∈ 1o ∧
(𝐴 +o
1o) = suc 𝑦))) | 
| 65 | 64 | rspcev 2868 | 
. . . . . . . . . . . 12
⊢
((1o ∈ ω ∧ (∅ ∈ 1o ∧
(𝐴 +o
1o) = suc 𝑦))
→ ∃𝑥 ∈
ω (∅ ∈ 𝑥
∧ (𝐴 +o
𝑥) = suc 𝑦)) | 
| 66 | 60, 65 | mpan 424 | 
. . . . . . . . . . 11
⊢ ((∅
∈ 1o ∧ (𝐴 +o 1o) = suc 𝑦) → ∃𝑥 ∈ ω (∅ ∈
𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)) | 
| 67 | 54, 59, 66 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦)) | 
| 68 | 67 | ex 115 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 69 | 68 | ad2antlr 489 | 
. . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴 = 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 70 | 52, 69 | jaod 718 | 
. . . . . . 7
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 71 | 25, 70 | syl5 32 | 
. . . . . 6
⊢ (((𝑦 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦))) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))) | 
| 72 | 71 | exp31 364 | 
. . . . 5
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ∈ 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑦)) → (𝐴 ∈ suc 𝑦 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = suc 𝑦))))) | 
| 73 | 11, 16, 21, 24, 72 | finds2 4637 | 
. . . 4
⊢ (𝑏 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝑏 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝑏)))) | 
| 74 | 6, 73 | vtoclga 2830 | 
. . 3
⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))) | 
| 75 | 74 | impcom 125 | 
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | 
| 76 |   | peano1 4630 | 
. . . . . . . . 9
⊢ ∅
∈ ω | 
| 77 |   | nnaord 6567 | 
. . . . . . . . 9
⊢ ((∅
∈ ω ∧ 𝑥
∈ ω ∧ 𝐴
∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝑥))) | 
| 78 | 76, 77 | mp3an1 1335 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅
∈ 𝑥 ↔ (𝐴 +o ∅) ∈
(𝐴 +o 𝑥))) | 
| 79 | 78 | ancoms 268 | 
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅
∈ 𝑥 ↔ (𝐴 +o ∅) ∈
(𝐴 +o 𝑥))) | 
| 80 |   | nna0 6532 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) | 
| 81 | 80 | adantr 276 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o ∅) = 𝐴) | 
| 82 | 81 | eleq1d 2265 | 
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +o ∅) ∈
(𝐴 +o 𝑥) ↔ 𝐴 ∈ (𝐴 +o 𝑥))) | 
| 83 | 79, 82 | bitrd 188 | 
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅
∈ 𝑥 ↔ 𝐴 ∈ (𝐴 +o 𝑥))) | 
| 84 | 83 | anbi1d 465 | 
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝐵) ↔ (𝐴 ∈ (𝐴 +o 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵))) | 
| 85 |   | eleq2 2260 | 
. . . . . 6
⊢ ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +o 𝑥) ↔ 𝐴 ∈ 𝐵)) | 
| 86 | 85 | biimpac 298 | 
. . . . 5
⊢ ((𝐴 ∈ (𝐴 +o 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴 ∈ 𝐵) | 
| 87 | 84, 86 | biimtrdi 163 | 
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) →
((∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝐵) → 𝐴 ∈ 𝐵)) | 
| 88 | 87 | rexlimdva 2614 | 
. . 3
⊢ (𝐴 ∈ ω →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝐵) → 𝐴 ∈ 𝐵)) | 
| 89 | 88 | adantr 276 | 
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(∃𝑥 ∈ ω
(∅ ∈ 𝑥 ∧
(𝐴 +o 𝑥) = 𝐵) → 𝐴 ∈ 𝐵)) | 
| 90 | 75, 89 | impbid 129 | 
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |