Step | Hyp | Ref
| Expression |
1 | | simpll 519 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = ∅) → 𝑦 ∈ 𝑧) |
2 | | noel 3413 |
. . . . . . . . 9
⊢ ¬
𝑦 ∈
∅ |
3 | | eleq2 2230 |
. . . . . . . . 9
⊢ (𝑧 = ∅ → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅)) |
4 | 2, 3 | mtbiri 665 |
. . . . . . . 8
⊢ (𝑧 = ∅ → ¬ 𝑦 ∈ 𝑧) |
5 | 4 | adantl 275 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = ∅) → ¬ 𝑦 ∈ 𝑧) |
6 | 1, 5 | pm2.21dd 610 |
. . . . . 6
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = ∅) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) |
7 | | eleq2 2230 |
. . . . . . . . . . 11
⊢ (𝑧 = {∅} → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ {∅})) |
8 | 7 | biimpac 296 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 = {∅}) → 𝑦 ∈ {∅}) |
9 | | velsn 3593 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) |
10 | 8, 9 | sylib 121 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 = {∅}) → 𝑦 = ∅) |
11 | | orc 702 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → (𝑦 = ∅ ∨ 𝑦 = {∅})) |
12 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
13 | 12 | elpr 3597 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {∅, {∅}}
↔ (𝑦 = ∅ ∨
𝑦 =
{∅})) |
14 | 11, 13 | sylibr 133 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → 𝑦 ∈ {∅,
{∅}}) |
15 | 10, 14 | syl 14 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 = {∅}) → 𝑦 ∈ {∅,
{∅}}) |
16 | 15 | adantlr 469 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = {∅}) → 𝑦 ∈ {∅,
{∅}}) |
17 | | biidd 171 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜑)) |
18 | 17 | elrab 2882 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ↔ (𝑧 ∈ {∅, {∅}} ∧ 𝜑)) |
19 | 18 | simprbi 273 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} → 𝜑) |
20 | 19 | ad2antlr 481 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = {∅}) → 𝜑) |
21 | | biidd 171 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) |
22 | 21 | elrab 2882 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} ↔ (𝑦 ∈ {∅, {∅}} ∧ 𝜑)) |
23 | 16, 20, 22 | sylanbrc 414 |
. . . . . 6
⊢ (((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) ∧ 𝑧 = {∅}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) |
24 | | elrabi 2879 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} → 𝑧 ∈ {∅,
{∅}}) |
25 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
26 | 25 | elpr 3597 |
. . . . . . . 8
⊢ (𝑧 ∈ {∅, {∅}}
↔ (𝑧 = ∅ ∨
𝑧 =
{∅})) |
27 | 24, 26 | sylib 121 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑} → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
28 | 27 | adantl 275 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → (𝑧 = ∅ ∨ 𝑧 = {∅})) |
29 | 6, 23, 28 | mpjaodan 788 |
. . . . 5
⊢ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) |
30 | 29 | gen2 1438 |
. . . 4
⊢
∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) |
31 | | dftr2 4082 |
. . . 4
⊢ (Tr
{𝑥 ∈ {∅,
{∅}} ∣ 𝜑} ↔
∀𝑦∀𝑧((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑}) → 𝑦 ∈ {𝑥 ∈ {∅, {∅}} ∣ 𝜑})) |
32 | 30, 31 | mpbir 145 |
. . 3
⊢ Tr {𝑥 ∈ {∅, {∅}}
∣ 𝜑} |
33 | | ssrab2 3227 |
. . 3
⊢ {𝑥 ∈ {∅, {∅}}
∣ 𝜑} ⊆ {∅,
{∅}} |
34 | | 2ordpr 4501 |
. . 3
⊢ Ord
{∅, {∅}} |
35 | | trssord 4358 |
. . 3
⊢ ((Tr
{𝑥 ∈ {∅,
{∅}} ∣ 𝜑} ∧
{𝑥 ∈ {∅,
{∅}} ∣ 𝜑} ⊆
{∅, {∅}} ∧ Ord {∅, {∅}}) → Ord {𝑥 ∈ {∅, {∅}}
∣ 𝜑}) |
36 | 32, 33, 34, 35 | mp3an 1327 |
. 2
⊢ Ord
{𝑥 ∈ {∅,
{∅}} ∣ 𝜑} |
37 | | pp0ex 4168 |
. . . 4
⊢ {∅,
{∅}} ∈ V |
38 | 37 | rabex 4126 |
. . 3
⊢ {𝑥 ∈ {∅, {∅}}
∣ 𝜑} ∈
V |
39 | 38 | elon 4352 |
. 2
⊢ ({𝑥 ∈ {∅, {∅}}
∣ 𝜑} ∈ On ↔
Ord {𝑥 ∈ {∅,
{∅}} ∣ 𝜑}) |
40 | 36, 39 | mpbir 145 |
1
⊢ {𝑥 ∈ {∅, {∅}}
∣ 𝜑} ∈
On |