![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tz6.12-1 | GIF version |
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
tz6.12-1 | ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5263 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | iota1 5230 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦)) | |
3 | 2 | biimpac 298 | . 2 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦) |
4 | 1, 3 | eqtrid 2238 | 1 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃!weu 2042 class class class wbr 4030 ℩cio 5214 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-sn 3625 df-pr 3626 df-uni 3837 df-iota 5216 df-fv 5263 |
This theorem is referenced by: tz6.12 5583 tz6.12c 5585 funbrfv 5596 |
Copyright terms: Public domain | W3C validator |