ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-1 GIF version

Theorem tz6.12-1 5544
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12-1
StepHypRef Expression
1 df-fv 5226 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 iota1 5194 . . 3 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
32biimpac 298 . 2 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
41, 3eqtrid 2222 1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  ∃!weu 2026   class class class wbr 4005  cio 5178  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180  df-fv 5226
This theorem is referenced by:  tz6.12  5545  tz6.12c  5547  funbrfv  5556
  Copyright terms: Public domain W3C validator