ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-1 GIF version

Theorem tz6.12-1 5602
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12-1
StepHypRef Expression
1 df-fv 5278 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 iota1 5245 . . 3 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
32biimpac 298 . 2 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
41, 3eqtrid 2249 1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  ∃!weu 2053   class class class wbr 4043  cio 5229  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-sn 3638  df-pr 3639  df-uni 3850  df-iota 5231  df-fv 5278
This theorem is referenced by:  tz6.12  5603  tz6.12c  5605  funbrfv  5616
  Copyright terms: Public domain W3C validator