ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffitest GIF version

Theorem diffitest 7005
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
Hypothesis
Ref Expression
diffitest.1 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
Assertion
Ref Expression
diffitest 𝜑 ∨ ¬ ¬ 𝜑)
Distinct variable groups:   𝑎,𝑏   𝜑,𝑏
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem diffitest
Dummy variables 𝑥 𝑛 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4182 . . . . . 6 ∅ ∈ V
2 snfig 6925 . . . . . 6 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 5 . . . . 5 {∅} ∈ Fin
4 diffitest.1 . . . . 5 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
5 difeq1 3288 . . . . . . . 8 (𝑎 = {∅} → (𝑎𝑏) = ({∅} ∖ 𝑏))
65eleq1d 2275 . . . . . . 7 (𝑎 = {∅} → ((𝑎𝑏) ∈ Fin ↔ ({∅} ∖ 𝑏) ∈ Fin))
76albidv 1848 . . . . . 6 (𝑎 = {∅} → (∀𝑏(𝑎𝑏) ∈ Fin ↔ ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
87rspcv 2877 . . . . 5 ({∅} ∈ Fin → (∀𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin → ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
93, 4, 8mp2 16 . . . 4 𝑏({∅} ∖ 𝑏) ∈ Fin
10 rabexg 4198 . . . . . 6 ({∅} ∈ Fin → {𝑥 ∈ {∅} ∣ 𝜑} ∈ V)
113, 10ax-mp 5 . . . . 5 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
12 difeq2 3289 . . . . . 6 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → ({∅} ∖ 𝑏) = ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
1312eleq1d 2275 . . . . 5 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → (({∅} ∖ 𝑏) ∈ Fin ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin))
1411, 13spcv 2871 . . . 4 (∀𝑏({∅} ∖ 𝑏) ∈ Fin → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin)
159, 14ax-mp 5 . . 3 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin
16 isfi 6870 . . 3 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin ↔ ∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛)
1715, 16mpbi 145 . 2 𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛
18 0elnn 4680 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
19 breq2 4058 . . . . . . . . . 10 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅))
20 en0 6905 . . . . . . . . . 10 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅ ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
2119, 20bitrdi 196 . . . . . . . . 9 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅))
2221biimpac 298 . . . . . . . 8 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
23 rabeq0 3494 . . . . . . . . 9 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
24 notrab 3454 . . . . . . . . . 10 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
2524eqeq1i 2214 . . . . . . . . 9 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
261snm 3758 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
27 r19.3rmv 3555 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
2826, 27ax-mp 5 . . . . . . . . 9 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
2923, 25, 283bitr4i 212 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ ¬ ¬ 𝜑)
3022, 29sylib 122 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ¬ ¬ 𝜑)
3130olcd 736 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
32 ensym 6891 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
33 elex2 2790 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑤 𝑤𝑛)
34 enm 6935 . . . . . . . 8 ((𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∧ ∃𝑤 𝑤𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
3532, 33, 34syl2an 289 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
36 biidd 172 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜑))
3736elrab 2933 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑦 ∈ {∅} ∧ ¬ 𝜑))
3837simprbi 275 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
3938orcd 735 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4039, 24eleq2s 2301 . . . . . . . 8 (𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4140exlimiv 1622 . . . . . . 7 (∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4235, 41syl 14 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4331, 42jaodan 799 . . . . 5 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4418, 43sylan2 286 . . . 4 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ∈ ω) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4544ancoms 268 . . 3 ((𝑛 ∈ ω ∧ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4645rexlimiva 2619 . 2 (∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4717, 46ax-mp 5 1 𝜑 ∨ ¬ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 710  wal 1371   = wceq 1373  wex 1516  wcel 2177  wral 2485  wrex 2486  {crab 2489  Vcvv 2773  cdif 3167  c0 3464  {csn 3638   class class class wbr 4054  ωcom 4651  cen 6843  Fincfn 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-id 4353  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1o 6520  df-er 6638  df-en 6846  df-fin 6848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator