ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffitest GIF version

Theorem diffitest 6881
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
Hypothesis
Ref Expression
diffitest.1 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
Assertion
Ref Expression
diffitest 𝜑 ∨ ¬ ¬ 𝜑)
Distinct variable groups:   𝑎,𝑏   𝜑,𝑏
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem diffitest
Dummy variables 𝑥 𝑛 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4127 . . . . . 6 ∅ ∈ V
2 snfig 6808 . . . . . 6 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 5 . . . . 5 {∅} ∈ Fin
4 diffitest.1 . . . . 5 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
5 difeq1 3246 . . . . . . . 8 (𝑎 = {∅} → (𝑎𝑏) = ({∅} ∖ 𝑏))
65eleq1d 2246 . . . . . . 7 (𝑎 = {∅} → ((𝑎𝑏) ∈ Fin ↔ ({∅} ∖ 𝑏) ∈ Fin))
76albidv 1824 . . . . . 6 (𝑎 = {∅} → (∀𝑏(𝑎𝑏) ∈ Fin ↔ ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
87rspcv 2837 . . . . 5 ({∅} ∈ Fin → (∀𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin → ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
93, 4, 8mp2 16 . . . 4 𝑏({∅} ∖ 𝑏) ∈ Fin
10 rabexg 4143 . . . . . 6 ({∅} ∈ Fin → {𝑥 ∈ {∅} ∣ 𝜑} ∈ V)
113, 10ax-mp 5 . . . . 5 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
12 difeq2 3247 . . . . . 6 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → ({∅} ∖ 𝑏) = ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
1312eleq1d 2246 . . . . 5 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → (({∅} ∖ 𝑏) ∈ Fin ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin))
1411, 13spcv 2831 . . . 4 (∀𝑏({∅} ∖ 𝑏) ∈ Fin → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin)
159, 14ax-mp 5 . . 3 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin
16 isfi 6755 . . 3 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin ↔ ∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛)
1715, 16mpbi 145 . 2 𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛
18 0elnn 4615 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
19 breq2 4004 . . . . . . . . . 10 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅))
20 en0 6789 . . . . . . . . . 10 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅ ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
2119, 20bitrdi 196 . . . . . . . . 9 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅))
2221biimpac 298 . . . . . . . 8 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
23 rabeq0 3452 . . . . . . . . 9 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
24 notrab 3412 . . . . . . . . . 10 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
2524eqeq1i 2185 . . . . . . . . 9 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
261snm 3711 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
27 r19.3rmv 3513 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
2826, 27ax-mp 5 . . . . . . . . 9 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
2923, 25, 283bitr4i 212 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ ¬ ¬ 𝜑)
3022, 29sylib 122 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ¬ ¬ 𝜑)
3130olcd 734 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
32 ensym 6775 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
33 elex2 2753 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑤 𝑤𝑛)
34 enm 6814 . . . . . . . 8 ((𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∧ ∃𝑤 𝑤𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
3532, 33, 34syl2an 289 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
36 biidd 172 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜑))
3736elrab 2893 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑦 ∈ {∅} ∧ ¬ 𝜑))
3837simprbi 275 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
3938orcd 733 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4039, 24eleq2s 2272 . . . . . . . 8 (𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4140exlimiv 1598 . . . . . . 7 (∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4235, 41syl 14 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4331, 42jaodan 797 . . . . 5 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4418, 43sylan2 286 . . . 4 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ∈ ω) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4544ancoms 268 . . 3 ((𝑛 ∈ ω ∧ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4645rexlimiva 2589 . 2 (∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4717, 46ax-mp 5 1 𝜑 ∨ ¬ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 708  wal 1351   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  {crab 2459  Vcvv 2737  cdif 3126  c0 3422  {csn 3591   class class class wbr 4000  ωcom 4586  cen 6732  Fincfn 6734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1o 6411  df-er 6529  df-en 6735  df-fin 6737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator