ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffitest GIF version

Theorem diffitest 6781
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
Hypothesis
Ref Expression
diffitest.1 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
Assertion
Ref Expression
diffitest 𝜑 ∨ ¬ ¬ 𝜑)
Distinct variable groups:   𝑎,𝑏   𝜑,𝑏
Allowed substitution hint:   𝜑(𝑎)

Proof of Theorem diffitest
Dummy variables 𝑥 𝑛 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4055 . . . . . 6 ∅ ∈ V
2 snfig 6708 . . . . . 6 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 5 . . . . 5 {∅} ∈ Fin
4 diffitest.1 . . . . 5 𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin
5 difeq1 3187 . . . . . . . 8 (𝑎 = {∅} → (𝑎𝑏) = ({∅} ∖ 𝑏))
65eleq1d 2208 . . . . . . 7 (𝑎 = {∅} → ((𝑎𝑏) ∈ Fin ↔ ({∅} ∖ 𝑏) ∈ Fin))
76albidv 1796 . . . . . 6 (𝑎 = {∅} → (∀𝑏(𝑎𝑏) ∈ Fin ↔ ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
87rspcv 2785 . . . . 5 ({∅} ∈ Fin → (∀𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin → ∀𝑏({∅} ∖ 𝑏) ∈ Fin))
93, 4, 8mp2 16 . . . 4 𝑏({∅} ∖ 𝑏) ∈ Fin
10 rabexg 4071 . . . . . 6 ({∅} ∈ Fin → {𝑥 ∈ {∅} ∣ 𝜑} ∈ V)
113, 10ax-mp 5 . . . . 5 {𝑥 ∈ {∅} ∣ 𝜑} ∈ V
12 difeq2 3188 . . . . . 6 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → ({∅} ∖ 𝑏) = ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
1312eleq1d 2208 . . . . 5 (𝑏 = {𝑥 ∈ {∅} ∣ 𝜑} → (({∅} ∖ 𝑏) ∈ Fin ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin))
1411, 13spcv 2779 . . . 4 (∀𝑏({∅} ∖ 𝑏) ∈ Fin → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin)
159, 14ax-mp 5 . . 3 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin
16 isfi 6655 . . 3 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∈ Fin ↔ ∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛)
1715, 16mpbi 144 . 2 𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛
18 0elnn 4532 . . . . 5 (𝑛 ∈ ω → (𝑛 = ∅ ∨ ∅ ∈ 𝑛))
19 breq2 3933 . . . . . . . . . 10 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅))
20 en0 6689 . . . . . . . . . 10 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ ∅ ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
2119, 20syl6bb 195 . . . . . . . . 9 (𝑛 = ∅ → (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ↔ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅))
2221biimpac 296 . . . . . . . 8 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅)
23 rabeq0 3392 . . . . . . . . 9 ({𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅ ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
24 notrab 3353 . . . . . . . . . 10 ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = {𝑥 ∈ {∅} ∣ ¬ 𝜑}
2524eqeq1i 2147 . . . . . . . . 9 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ {𝑥 ∈ {∅} ∣ ¬ 𝜑} = ∅)
261snm 3643 . . . . . . . . . 10 𝑤 𝑤 ∈ {∅}
27 r19.3rmv 3453 . . . . . . . . . 10 (∃𝑤 𝑤 ∈ {∅} → (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑))
2826, 27ax-mp 5 . . . . . . . . 9 (¬ ¬ 𝜑 ↔ ∀𝑥 ∈ {∅} ¬ ¬ 𝜑)
2923, 25, 283bitr4i 211 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) = ∅ ↔ ¬ ¬ 𝜑)
3022, 29sylib 121 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → ¬ ¬ 𝜑)
3130olcd 723 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 = ∅) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
32 ensym 6675 . . . . . . . 8 (({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
33 elex2 2702 . . . . . . . 8 (∅ ∈ 𝑛 → ∃𝑤 𝑤𝑛)
34 enm 6714 . . . . . . . 8 ((𝑛 ≈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ∧ ∃𝑤 𝑤𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
3532, 33, 34syl2an 287 . . . . . . 7 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → ∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}))
36 biidd 171 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜑))
3736elrab 2840 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} ↔ (𝑦 ∈ {∅} ∧ ¬ 𝜑))
3837simprbi 273 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → ¬ 𝜑)
3938orcd 722 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ {∅} ∣ ¬ 𝜑} → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4039, 24eleq2s 2234 . . . . . . . 8 (𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4140exlimiv 1577 . . . . . . 7 (∃𝑦 𝑦 ∈ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4235, 41syl 14 . . . . . 6 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ ∅ ∈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4331, 42jaodan 786 . . . . 5 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 ∧ (𝑛 = ∅ ∨ ∅ ∈ 𝑛)) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4418, 43sylan2 284 . . . 4 ((({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛𝑛 ∈ ω) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4544ancoms 266 . . 3 ((𝑛 ∈ ω ∧ ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛) → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4645rexlimiva 2544 . 2 (∃𝑛 ∈ ω ({∅} ∖ {𝑥 ∈ {∅} ∣ 𝜑}) ≈ 𝑛 → (¬ 𝜑 ∨ ¬ ¬ 𝜑))
4717, 46ax-mp 5 1 𝜑 ∨ ¬ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 697  wal 1329   = wceq 1331  wex 1468  wcel 1480  wral 2416  wrex 2417  {crab 2420  Vcvv 2686  cdif 3068  c0 3363  {csn 3527   class class class wbr 3929  ωcom 4504  cen 6632  Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator