ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbrg GIF version

Theorem sbcbrg 4083
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
sbcbrg (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))

Proof of Theorem sbcbrg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2988 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶[𝐴 / 𝑥]𝐵𝑅𝐶))
2 csbeq1 3083 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3083 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝑅 = 𝐴 / 𝑥𝑅)
4 csbeq1 3083 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4breq123d 4043 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
6 nfcsb1v 3113 . . . 4 𝑥𝑦 / 𝑥𝐵
7 nfcsb1v 3113 . . . 4 𝑥𝑦 / 𝑥𝑅
8 nfcsb1v 3113 . . . 4 𝑥𝑦 / 𝑥𝐶
96, 7, 8nfbr 4075 . . 3 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶
10 csbeq1a 3089 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3089 . . . 4 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
12 csbeq1a 3089 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1310, 11, 12breq123d 4043 . . 3 (𝑥 = 𝑦 → (𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶))
149, 13sbie 1802 . 2 ([𝑦 / 𝑥]𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶)
151, 5, 14vtoclbg 2821 1 (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  [wsb 1773  wcel 2164  [wsbc 2985  csb 3080   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  sbcbr12g  4084  csbcnvg  4846  sbcfung  5278  csbfv12g  5592
  Copyright terms: Public domain W3C validator