![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcbrg | GIF version |
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
sbcbrg | ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2988 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶 ↔ [𝐴 / 𝑥]𝐵𝑅𝐶)) | |
2 | csbeq1 3083 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
3 | csbeq1 3083 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅) | |
4 | csbeq1 3083 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
5 | 2, 3, 4 | breq123d 4043 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
6 | nfcsb1v 3113 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
7 | nfcsb1v 3113 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 | |
8 | nfcsb1v 3113 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
9 | 6, 7, 8 | nfbr 4075 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶 |
10 | csbeq1a 3089 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
11 | csbeq1a 3089 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑅 = ⦋𝑦 / 𝑥⦌𝑅) | |
12 | csbeq1a 3089 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
13 | 10, 11, 12 | breq123d 4043 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵𝑅𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶)) |
14 | 9, 13 | sbie 1802 | . 2 ⊢ ([𝑦 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶) |
15 | 1, 5, 14 | vtoclbg 2821 | 1 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1773 ∈ wcel 2164 [wsbc 2985 ⦋csb 3080 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: sbcbr12g 4084 csbcnvg 4846 sbcfung 5278 csbfv12g 5592 |
Copyright terms: Public domain | W3C validator |