ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbrg GIF version

Theorem sbcbrg 4036
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
sbcbrg (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))

Proof of Theorem sbcbrg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2954 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶[𝐴 / 𝑥]𝐵𝑅𝐶))
2 csbeq1 3048 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3048 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝑅 = 𝐴 / 𝑥𝑅)
4 csbeq1 3048 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4breq123d 3996 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
6 nfcsb1v 3078 . . . 4 𝑥𝑦 / 𝑥𝐵
7 nfcsb1v 3078 . . . 4 𝑥𝑦 / 𝑥𝑅
8 nfcsb1v 3078 . . . 4 𝑥𝑦 / 𝑥𝐶
96, 7, 8nfbr 4028 . . 3 𝑥𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶
10 csbeq1a 3054 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3054 . . . 4 (𝑥 = 𝑦𝑅 = 𝑦 / 𝑥𝑅)
12 csbeq1a 3054 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1310, 11, 12breq123d 3996 . . 3 (𝑥 = 𝑦 → (𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶))
149, 13sbie 1779 . 2 ([𝑦 / 𝑥]𝐵𝑅𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝑅𝑦 / 𝑥𝐶)
151, 5, 14vtoclbg 2787 1 (𝐴𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝑅𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  [wsb 1750  wcel 2136  [wsbc 2951  csb 3045   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  sbcbr12g  4037  csbcnvg  4788  sbcfung  5212  csbfv12g  5522
  Copyright terms: Public domain W3C validator