Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcbrg | GIF version |
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
sbcbrg | ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2958 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶 ↔ [𝐴 / 𝑥]𝐵𝑅𝐶)) | |
2 | csbeq1 3052 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
3 | csbeq1 3052 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅) | |
4 | csbeq1 3052 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
5 | 2, 3, 4 | breq123d 4001 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
6 | nfcsb1v 3082 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
7 | nfcsb1v 3082 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 | |
8 | nfcsb1v 3082 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
9 | 6, 7, 8 | nfbr 4033 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶 |
10 | csbeq1a 3058 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
11 | csbeq1a 3058 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑅 = ⦋𝑦 / 𝑥⦌𝑅) | |
12 | csbeq1a 3058 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
13 | 10, 11, 12 | breq123d 4001 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵𝑅𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶)) |
14 | 9, 13 | sbie 1784 | . 2 ⊢ ([𝑦 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶) |
15 | 1, 5, 14 | vtoclbg 2791 | 1 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 [wsb 1755 ∈ wcel 2141 [wsbc 2955 ⦋csb 3049 class class class wbr 3987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 |
This theorem is referenced by: sbcbr12g 4042 csbcnvg 4793 sbcfung 5220 csbfv12g 5530 |
Copyright terms: Public domain | W3C validator |