| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcbrg | GIF version | ||
| Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| sbcbrg | ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3031 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝐵𝑅𝐶 ↔ [𝐴 / 𝑥]𝐵𝑅𝐶)) | |
| 2 | csbeq1 3127 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 3 | csbeq1 3127 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅) | |
| 4 | csbeq1 3127 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | 2, 3, 4 | breq123d 4096 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
| 6 | nfcsb1v 3157 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 7 | nfcsb1v 3157 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑅 | |
| 8 | nfcsb1v 3157 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 9 | 6, 7, 8 | nfbr 4129 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶 |
| 10 | csbeq1a 3133 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 11 | csbeq1a 3133 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑅 = ⦋𝑦 / 𝑥⦌𝑅) | |
| 12 | csbeq1a 3133 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 13 | 10, 11, 12 | breq123d 4096 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵𝑅𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶)) |
| 14 | 9, 13 | sbie 1837 | . 2 ⊢ ([𝑦 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵⦋𝑦 / 𝑥⦌𝑅⦋𝑦 / 𝑥⦌𝐶) |
| 15 | 1, 5, 14 | vtoclbg 2862 | 1 ⊢ (𝐴 ∈ 𝐷 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 [wsb 1808 ∈ wcel 2200 [wsbc 3028 ⦋csb 3124 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: sbcbr12g 4138 csbcnvg 4903 sbcfung 5338 csbfv12g 5661 |
| Copyright terms: Public domain | W3C validator |