Step | Hyp | Ref
| Expression |
1 | | 0cn 7912 |
. . 3
⊢ 0 ∈
ℂ |
2 | | eqid 2170 |
. . . . 5
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
3 | 2 | cntoptop 13327 |
. . . 4
⊢
(MetOpen‘(abs ∘ − )) ∈ Top |
4 | | unicntopcntop 13330 |
. . . . 5
⊢ ℂ =
∪ (MetOpen‘(abs ∘ −
)) |
5 | 4 | ntrtop 12922 |
. . . 4
⊢
((MetOpen‘(abs ∘ − )) ∈ Top →
((int‘(MetOpen‘(abs ∘ − )))‘ℂ) =
ℂ) |
6 | 3, 5 | ax-mp 5 |
. . 3
⊢
((int‘(MetOpen‘(abs ∘ − )))‘ℂ) =
ℂ |
7 | 1, 6 | eleqtrri 2246 |
. 2
⊢ 0 ∈
((int‘(MetOpen‘(abs ∘ −
)))‘ℂ) |
8 | | ax-1cn 7867 |
. . 3
⊢ 1 ∈
ℂ |
9 | | 1rp 9614 |
. . . . . 6
⊢ 1 ∈
ℝ+ |
10 | | rpmincl 11201 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 1 ∈ ℝ+) → inf({𝑥, 1}, ℝ, < ) ∈
ℝ+) |
11 | 9, 10 | mpan2 423 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ inf({𝑥, 1}, ℝ,
< ) ∈ ℝ+) |
12 | | breq1 3992 |
. . . . . . . 8
⊢ (𝑢 = 𝑤 → (𝑢 # 0 ↔ 𝑤 # 0)) |
13 | 12 | elrab 2886 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) |
14 | | simprl 526 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) → 𝑤 ∈
ℂ) |
15 | 14 | subid1d 8219 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) → (𝑤 − 0) = 𝑤) |
16 | 15 | fveq2d 5500 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
(abs‘(𝑤 − 0)) =
(abs‘𝑤)) |
17 | 16 | breq1d 3999 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
((abs‘(𝑤 − 0))
< inf({𝑥, 1}, ℝ,
< ) ↔ (abs‘𝑤)
< inf({𝑥, 1}, ℝ,
< ))) |
18 | 14 | abscld 11145 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
(abs‘𝑤) ∈
ℝ) |
19 | | rpre 9617 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
20 | 19 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) → 𝑥 ∈
ℝ) |
21 | | 1red 7935 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) → 1
∈ ℝ) |
22 | | ltmininf 11198 |
. . . . . . . . . . 11
⊢
(((abs‘𝑤)
∈ ℝ ∧ 𝑥
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑤) < inf({𝑥, 1}, ℝ, < ) ↔
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1))) |
23 | 18, 20, 21, 22 | syl3anc 1233 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
((abs‘𝑤) <
inf({𝑥, 1}, ℝ, < )
↔ ((abs‘𝑤) <
𝑥 ∧ (abs‘𝑤) < 1))) |
24 | 17, 23 | bitrd 187 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
((abs‘(𝑤 − 0))
< inf({𝑥, 1}, ℝ,
< ) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1))) |
25 | | eqid 2170 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) |
26 | | fveq2 5496 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → (exp‘𝑧) = (exp‘𝑤)) |
27 | 26 | oveq1d 5868 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → ((exp‘𝑧) − 1) = ((exp‘𝑤) − 1)) |
28 | | id 19 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → 𝑧 = 𝑤) |
29 | 27, 28 | oveq12d 5871 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑤) − 1) / 𝑤)) |
30 | | simplr 525 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0)) |
31 | 30, 13 | sylibr 133 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0}) |
32 | | efcl 11627 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℂ →
(exp‘𝑤) ∈
ℂ) |
33 | | peano2cnm 8185 |
. . . . . . . . . . . . . . . 16
⊢
((exp‘𝑤)
∈ ℂ → ((exp‘𝑤) − 1) ∈ ℂ) |
34 | 14, 32, 33 | 3syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
((exp‘𝑤) − 1)
∈ ℂ) |
35 | | simprr 527 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) → 𝑤 # 0) |
36 | 34, 14, 35 | divclapd 8707 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
(((exp‘𝑤) − 1)
/ 𝑤) ∈
ℂ) |
37 | 36 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(((exp‘𝑤) − 1)
/ 𝑤) ∈
ℂ) |
38 | 25, 29, 31, 37 | fvmptd3 5589 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤)) |
39 | 38 | fvoveq1d 5875 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(abs‘(((𝑧 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ↦
(((exp‘𝑧) − 1)
/ 𝑧))‘𝑤) − 1)) =
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1))) |
40 | | 1cnd 7936 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 1 ∈
ℂ) |
41 | 37, 40 | subcld 8230 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
((((exp‘𝑤) − 1)
/ 𝑤) − 1) ∈
ℂ) |
42 | 41 | abscld 11145 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(abs‘((((exp‘𝑤)
− 1) / 𝑤) − 1))
∈ ℝ) |
43 | | simplrl 530 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈
ℂ) |
44 | 43 | abscld 11145 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(abs‘𝑤) ∈
ℝ) |
45 | | simpll 524 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈
ℝ+) |
46 | 45 | rpred 9653 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈
ℝ) |
47 | | abscl 11015 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℂ →
(abs‘𝑤) ∈
ℝ) |
48 | 47 | ad2antrr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘𝑤) ∈
ℝ) |
49 | 32 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(exp‘𝑤) ∈
ℂ) |
50 | | subcl 8118 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((exp‘𝑤)
∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘𝑤) − 1) ∈ ℂ) |
51 | 49, 8, 50 | sylancl 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((exp‘𝑤) − 1)
∈ ℂ) |
52 | | simpll 524 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 𝑤 ∈
ℂ) |
53 | | simplr 525 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 𝑤 # 0) |
54 | 51, 52, 53 | divclapd 8707 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((exp‘𝑤) − 1)
/ 𝑤) ∈
ℂ) |
55 | | 1cnd 7936 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 1 ∈
ℂ) |
56 | 54, 55 | subcld 8230 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((((exp‘𝑤) − 1)
/ 𝑤) − 1) ∈
ℂ) |
57 | 56 | abscld 11145 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘((((exp‘𝑤)
− 1) / 𝑤) − 1))
∈ ℝ) |
58 | 48, 57 | remulcld 7950 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤) ·
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1))) ∈ ℝ) |
59 | 48 | resqcld 10635 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤)↑2)
∈ ℝ) |
60 | | 3re 8952 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 ∈
ℝ |
61 | | 4nn 9041 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
ℕ |
62 | | nndivre 8914 |
. . . . . . . . . . . . . . . . . 18
⊢ ((3
∈ ℝ ∧ 4 ∈ ℕ) → (3 / 4) ∈
ℝ) |
63 | 60, 61, 62 | mp2an 424 |
. . . . . . . . . . . . . . . . 17
⊢ (3 / 4)
∈ ℝ |
64 | | remulcl 7902 |
. . . . . . . . . . . . . . . . 17
⊢
((((abs‘𝑤)↑2) ∈ ℝ ∧ (3 / 4) ∈
ℝ) → (((abs‘𝑤)↑2) · (3 / 4)) ∈
ℝ) |
65 | 59, 63, 64 | sylancl 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((abs‘𝑤)↑2)
· (3 / 4)) ∈ ℝ) |
66 | 51, 52 | subcld 8230 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((exp‘𝑤) − 1)
− 𝑤) ∈
ℂ) |
67 | 66, 52, 53 | divcanap2d 8709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (((exp‘𝑤) − 1) − 𝑤)) |
68 | 51, 52, 52, 53 | divsubdirapd 8747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((((exp‘𝑤) − 1)
− 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤))) |
69 | 52, 53 | dividapd 8703 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 𝑤) = 1) |
70 | 69 | oveq2d 5869 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((((exp‘𝑤) − 1)
/ 𝑤) − (𝑤 / 𝑤)) = ((((exp‘𝑤) − 1) / 𝑤) − 1)) |
71 | 68, 70 | eqtrd 2203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((((exp‘𝑤) − 1)
− 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − 1)) |
72 | 71 | oveq2d 5869 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) |
73 | 49, 55, 52 | subsub4d 8261 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((exp‘𝑤) − 1)
− 𝑤) =
((exp‘𝑤) − (1 +
𝑤))) |
74 | | addcl 7899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1
∈ ℂ ∧ 𝑤
∈ ℂ) → (1 + 𝑤) ∈ ℂ) |
75 | 8, 52, 74 | sylancr 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (1 + 𝑤) ∈
ℂ) |
76 | | 2nn0 9152 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℕ0 |
77 | | eqid 2170 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℕ0
↦ ((𝑤↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛))) |
78 | 77 | eftlcl 11651 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑤 ∈ ℂ ∧ 2 ∈
ℕ0) → Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
79 | 52, 76, 78 | sylancl 411 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
80 | | df-2 8937 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 = (1 +
1) |
81 | | 1nn0 9151 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℕ0 |
82 | | 1e0p1 9384 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 = (0 +
1) |
83 | | 0nn0 9150 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
ℕ0 |
84 | | 0cnd 7913 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 ∈
ℂ) |
85 | 77 | efval2 11628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 ∈ ℂ →
(exp‘𝑤) =
Σ𝑘 ∈
ℕ0 ((𝑛
∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) |
86 | 85 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(exp‘𝑤) =
Σ𝑘 ∈
ℕ0 ((𝑛
∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) |
87 | | nn0uz 9521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
ℕ0 = (ℤ≥‘0) |
88 | 87 | sumeq1i 11326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Σ𝑘 ∈
ℕ0 ((𝑛
∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈
(ℤ≥‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘) |
89 | 86, 88 | eqtr2di 2220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈
(ℤ≥‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘) = (exp‘𝑤)) |
90 | 89 | oveq2d 5869 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 +
Σ𝑘 ∈
(ℤ≥‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) = (0 + (exp‘𝑤))) |
91 | 49 | addid2d 8069 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 +
(exp‘𝑤)) =
(exp‘𝑤)) |
92 | 90, 91 | eqtr2d 2204 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(exp‘𝑤) = (0 +
Σ𝑘 ∈
(ℤ≥‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘))) |
93 | | eft0val 11656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑤 ∈ ℂ → ((𝑤↑0) / (!‘0)) =
1) |
94 | 93 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑0) / (!‘0)) =
1) |
95 | 94 | oveq2d 5869 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = (0 +
1)) |
96 | 95, 82 | eqtr4di 2221 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) =
1) |
97 | 77, 82, 83, 52, 84, 92, 96 | efsep 11654 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(exp‘𝑤) = (1 +
Σ𝑘 ∈
(ℤ≥‘1)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘))) |
98 | | exp1 10482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑤 ∈ ℂ → (𝑤↑1) = 𝑤) |
99 | 98 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤↑1) = 𝑤) |
100 | 99 | oveq1d 5868 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 /
(!‘1))) |
101 | | fac1 10663 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(!‘1) = 1 |
102 | 101 | oveq2i 5864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 / (!‘1)) = (𝑤 / 1) |
103 | 100, 102 | eqtrdi 2219 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / 1)) |
104 | | div1 8620 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 ∈ ℂ → (𝑤 / 1) = 𝑤) |
105 | 104 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 1) = 𝑤) |
106 | 103, 105 | eqtrd 2203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = 𝑤) |
107 | 106 | oveq2d 5869 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (1 + ((𝑤↑1) / (!‘1))) = (1 +
𝑤)) |
108 | 77, 80, 81, 52, 55, 97, 107 | efsep 11654 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(exp‘𝑤) = ((1 + 𝑤) + Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘))) |
109 | 75, 79, 108 | mvrladdd 8286 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((exp‘𝑤) − (1 +
𝑤)) = Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) |
110 | 73, 109 | eqtrd 2203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((exp‘𝑤) − 1)
− 𝑤) = Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) |
111 | 67, 72, 110 | 3eqtr3d 2211 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)) = Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) |
112 | 111 | fveq2d 5500 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘(𝑤 ·
((((exp‘𝑤) − 1)
/ 𝑤) − 1))) =
(abs‘Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘))) |
113 | 52, 56 | absmuld 11158 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘(𝑤 ·
((((exp‘𝑤) − 1)
/ 𝑤) − 1))) =
((abs‘𝑤) ·
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1)))) |
114 | 112, 113 | eqtr3d 2205 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)))) |
115 | | eqid 2170 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦
(((abs‘𝑤)↑𝑛) / (!‘𝑛))) |
116 | | eqid 2170 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 +
1))↑𝑛))) = (𝑛 ∈ ℕ0
↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 +
1))↑𝑛))) |
117 | | 2nn 9039 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ |
118 | 117 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 2 ∈
ℕ) |
119 | | 1red 7935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 1 ∈
ℝ) |
120 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘𝑤) <
1) |
121 | 48, 119, 120 | ltled 8038 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘𝑤) ≤
1) |
122 | 77, 115, 116, 118, 52, 121 | eftlub 11653 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘Σ𝑘 ∈
(ℤ≥‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤↑𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2)
· 2)))) |
123 | 114, 122 | eqbrtrrd 4013 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤) ·
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1))) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2)
· 2)))) |
124 | | df-3 8938 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 = (2 +
1) |
125 | | fac2 10665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(!‘2) = 2 |
126 | 125 | oveq1i 5863 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((!‘2) · 2) = (2 · 2) |
127 | | 2t2e4 9032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (2
· 2) = 4 |
128 | 126, 127 | eqtr2i 2192 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 =
((!‘2) · 2) |
129 | 124, 128 | oveq12i 5865 |
. . . . . . . . . . . . . . . . . 18
⊢ (3 / 4) =
((2 + 1) / ((!‘2) · 2)) |
130 | 129 | oveq2i 5864 |
. . . . . . . . . . . . . . . . 17
⊢
(((abs‘𝑤)↑2) · (3 / 4)) =
(((abs‘𝑤)↑2)
· ((2 + 1) / ((!‘2) · 2))) |
131 | 123, 130 | breqtrrdi 4031 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤) ·
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1))) ≤ (((abs‘𝑤)↑2) · (3 / 4))) |
132 | 63 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ∈
ℝ) |
133 | 48 | sqge0d 10636 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 ≤
((abs‘𝑤)↑2)) |
134 | | 1re 7919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℝ |
135 | | 3lt4 9050 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 3 <
4 |
136 | | 4cn 8956 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 4 ∈
ℂ |
137 | 136 | mulid1i 7922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (4
· 1) = 4 |
138 | 135, 137 | breqtrri 4016 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 3 < (4
· 1) |
139 | | 4re 8955 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 4 ∈
ℝ |
140 | | 4pos 8975 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 <
4 |
141 | 139, 140 | pm3.2i 270 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (4 ∈
ℝ ∧ 0 < 4) |
142 | | ltdivmul 8792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((3
∈ ℝ ∧ 1 ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4))
→ ((3 / 4) < 1 ↔ 3 < (4 · 1))) |
143 | 60, 134, 141, 142 | mp3an 1332 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((3 / 4)
< 1 ↔ 3 < (4 · 1)) |
144 | 138, 143 | mpbir 145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (3 / 4)
< 1 |
145 | 63, 134, 144 | ltleii 8022 |
. . . . . . . . . . . . . . . . . . 19
⊢ (3 / 4)
≤ 1 |
146 | 145 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ≤
1) |
147 | 132, 119,
59, 133, 146 | lemul2ad 8856 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((abs‘𝑤)↑2)
· (3 / 4)) ≤ (((abs‘𝑤)↑2) · 1)) |
148 | 48 | recnd 7948 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘𝑤) ∈
ℂ) |
149 | 148 | sqcld 10607 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤)↑2)
∈ ℂ) |
150 | 149 | mulid1d 7937 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((abs‘𝑤)↑2)
· 1) = ((abs‘𝑤)↑2)) |
151 | 147, 150 | breqtrd 4015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(((abs‘𝑤)↑2)
· (3 / 4)) ≤ ((abs‘𝑤)↑2)) |
152 | 58, 65, 59, 131, 151 | letrd 8043 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤) ·
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1))) ≤ ((abs‘𝑤)↑2)) |
153 | 148 | sqvald 10606 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤)↑2) =
((abs‘𝑤) ·
(abs‘𝑤))) |
154 | 152, 153 | breqtrd 4015 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘𝑤) ·
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1))) ≤ ((abs‘𝑤)
· (abs‘𝑤))) |
155 | | absgt0ap 11063 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℂ → (𝑤 # 0 ↔ 0 <
(abs‘𝑤))) |
156 | 155 | ad2antrr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 # 0 ↔ 0 <
(abs‘𝑤))) |
157 | 53, 156 | mpbid 146 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 <
(abs‘𝑤)) |
158 | 48, 157 | elrpd 9650 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘𝑤) ∈
ℝ+) |
159 | 57, 48, 158 | lemul2d 9698 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
((abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤) ↔ ((abs‘𝑤) ·
(abs‘((((exp‘𝑤)
− 1) / 𝑤) −
1))) ≤ ((abs‘𝑤)
· (abs‘𝑤)))) |
160 | 154, 159 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) →
(abs‘((((exp‘𝑤)
− 1) / 𝑤) − 1))
≤ (abs‘𝑤)) |
161 | 160 | ad2ant2l 505 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(abs‘((((exp‘𝑤)
− 1) / 𝑤) − 1))
≤ (abs‘𝑤)) |
162 | | simprl 526 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(abs‘𝑤) < 𝑥) |
163 | 42, 44, 46, 161, 162 | lelttrd 8044 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(abs‘((((exp‘𝑤)
− 1) / 𝑤) − 1))
< 𝑥) |
164 | 39, 163 | eqbrtrd 4011 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) ∧
((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) →
(abs‘(((𝑧 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ↦
(((exp‘𝑧) − 1)
/ 𝑧))‘𝑤) − 1)) < 𝑥) |
165 | 164 | ex 114 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
(((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1) →
(abs‘(((𝑧 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ↦
(((exp‘𝑧) − 1)
/ 𝑧))‘𝑤) − 1)) < 𝑥)) |
166 | 24, 165 | sylbid 149 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
((abs‘(𝑤 − 0))
< inf({𝑥, 1}, ℝ,
< ) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) |
167 | 166 | adantld 276 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ (𝑤 ∈ ℂ
∧ 𝑤 # 0)) →
((𝑤 # 0 ∧
(abs‘(𝑤 − 0))
< inf({𝑥, 1}, ℝ,
< )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) |
168 | 13, 167 | sylan2b 285 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0}) → ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) →
(abs‘(((𝑧 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ↦
(((exp‘𝑧) − 1)
/ 𝑧))‘𝑤) − 1)) < 𝑥)) |
169 | 168 | ralrimiva 2543 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ∀𝑤 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) →
(abs‘(((𝑧 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ↦
(((exp‘𝑧) − 1)
/ 𝑧))‘𝑤) − 1)) < 𝑥)) |
170 | | brimralrspcev 4048 |
. . . . 5
⊢
((inf({𝑥, 1},
ℝ, < ) ∈ ℝ+ ∧ ∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) →
(abs‘(((𝑧 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ↦
(((exp‘𝑧) − 1)
/ 𝑧))‘𝑤) − 1)) < 𝑥)) → ∃𝑦 ∈ ℝ+
∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) |
171 | 11, 169, 170 | syl2anc 409 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ ∃𝑦 ∈
ℝ+ ∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) |
172 | 171 | rgen 2523 |
. . 3
⊢
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥) |
173 | | elrabi 2883 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 𝑧 ∈ ℂ) |
174 | | efcl 11627 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℂ →
(exp‘𝑧) ∈
ℂ) |
175 | 173, 174 | syl 14 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (exp‘𝑧) ∈ ℂ) |
176 | | 1cnd 7936 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 1 ∈
ℂ) |
177 | 175, 176 | subcld 8230 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → ((exp‘𝑧) − 1) ∈ ℂ) |
178 | | breq1 3992 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → (𝑢 # 0 ↔ 𝑧 # 0)) |
179 | 178 | elrab 2886 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0)) |
180 | 179 | simprbi 273 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 𝑧 # 0) |
181 | 177, 173,
180 | divclapd 8707 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − 1) / 𝑧) ∈ ℂ) |
182 | 25, 181 | fmpti 5648 |
. . . . . 6
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)):{𝑢 ∈ ℂ ∣ 𝑢 # 0}⟶ℂ |
183 | 182 | a1i 9 |
. . . . 5
⊢ (⊤
→ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)):{𝑢 ∈ ℂ ∣ 𝑢 # 0}⟶ℂ) |
184 | | apsscn 8566 |
. . . . . 6
⊢ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ⊆
ℂ |
185 | 184 | a1i 9 |
. . . . 5
⊢ (⊤
→ {𝑢 ∈ ℂ
∣ 𝑢 # 0} ⊆
ℂ) |
186 | | 0cnd 7913 |
. . . . 5
⊢ (⊤
→ 0 ∈ ℂ) |
187 | 183, 185,
186 | ellimc3ap 13424 |
. . . 4
⊢ (⊤
→ (1 ∈ ((𝑧 ∈
{𝑢 ∈ ℂ ∣
𝑢 # 0} ↦
(((exp‘𝑧) − 1)
/ 𝑧)) limℂ
0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+
∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)))) |
188 | 187 | mptru 1357 |
. . 3
⊢ (1 ∈
((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) limℂ 0)
↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+
∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))) |
189 | 8, 172, 188 | mpbir2an 937 |
. 2
⊢ 1 ∈
((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) limℂ
0) |
190 | 2 | cntoptopon 13326 |
. . . . 5
⊢
(MetOpen‘(abs ∘ − )) ∈
(TopOn‘ℂ) |
191 | 190 | toponrestid 12813 |
. . . 4
⊢
(MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘
− )) ↾t ℂ) |
192 | 173 | subid1d 8219 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (𝑧 − 0) = 𝑧) |
193 | 192 | oveq2d 5869 |
. . . . . 6
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)) =
(((exp‘𝑧) −
(exp‘0)) / 𝑧)) |
194 | | ef0 11635 |
. . . . . . . 8
⊢
(exp‘0) = 1 |
195 | 194 | oveq2i 5864 |
. . . . . . 7
⊢
((exp‘𝑧)
− (exp‘0)) = ((exp‘𝑧) − 1) |
196 | 195 | oveq1i 5863 |
. . . . . 6
⊢
(((exp‘𝑧)
− (exp‘0)) / 𝑧)
= (((exp‘𝑧) −
1) / 𝑧) |
197 | 193, 196 | eqtr2di 2220 |
. . . . 5
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0))) |
198 | 197 | mpteq2ia 4075 |
. . . 4
⊢ (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0))) |
199 | | ssidd 3168 |
. . . 4
⊢ (⊤
→ ℂ ⊆ ℂ) |
200 | | eff 11626 |
. . . . 5
⊢
exp:ℂ⟶ℂ |
201 | 200 | a1i 9 |
. . . 4
⊢ (⊤
→ exp:ℂ⟶ℂ) |
202 | 191, 2, 198, 199, 201, 199 | eldvap 13445 |
. . 3
⊢ (⊤
→ (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(MetOpen‘(abs
∘ − )))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) limℂ
0)))) |
203 | 202 | mptru 1357 |
. 2
⊢
(0(ℂ D exp)1 ↔ (0 ∈ ((int‘(MetOpen‘(abs
∘ − )))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) limℂ
0))) |
204 | 7, 189, 203 | mpbir2an 937 |
1
⊢ 0(ℂ
D exp)1 |