ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveflem GIF version

Theorem dveflem 14375
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub 11701, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dveflem 0(ℂ D exp)1

Proof of Theorem dveflem
Dummy variables 𝑘 𝑛 𝑤 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 7952 . . 3 0 ∈ ℂ
2 eqid 2177 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
32cntoptop 14221 . . . 4 (MetOpen‘(abs ∘ − )) ∈ Top
4 unicntopcntop 14224 . . . . 5 ℂ = (MetOpen‘(abs ∘ − ))
54ntrtop 13816 . . . 4 ((MetOpen‘(abs ∘ − )) ∈ Top → ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ)
63, 5ax-mp 5 . . 3 ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ
71, 6eleqtrri 2253 . 2 0 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ)
8 ax-1cn 7907 . . 3 1 ∈ ℂ
9 1rp 9660 . . . . . 6 1 ∈ ℝ+
10 rpmincl 11249 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → inf({𝑥, 1}, ℝ, < ) ∈ ℝ+)
119, 10mpan2 425 . . . . 5 (𝑥 ∈ ℝ+ → inf({𝑥, 1}, ℝ, < ) ∈ ℝ+)
12 breq1 4008 . . . . . . . 8 (𝑢 = 𝑤 → (𝑢 # 0 ↔ 𝑤 # 0))
1312elrab 2895 . . . . . . 7 (𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
14 simprl 529 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 𝑤 ∈ ℂ)
1514subid1d 8260 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (𝑤 − 0) = 𝑤)
1615fveq2d 5521 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (abs‘(𝑤 − 0)) = (abs‘𝑤))
1716breq1d 4015 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < ) ↔ (abs‘𝑤) < inf({𝑥, 1}, ℝ, < )))
1814abscld 11193 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (abs‘𝑤) ∈ ℝ)
19 rpre 9663 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2019adantr 276 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 𝑥 ∈ ℝ)
21 1red 7975 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 1 ∈ ℝ)
22 ltmininf 11246 . . . . . . . . . . 11 (((abs‘𝑤) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑤) < inf({𝑥, 1}, ℝ, < ) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2318, 20, 21, 22syl3anc 1238 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘𝑤) < inf({𝑥, 1}, ℝ, < ) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2417, 23bitrd 188 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < ) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
25 eqid 2177 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))
26 fveq2 5517 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (exp‘𝑧) = (exp‘𝑤))
2726oveq1d 5893 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((exp‘𝑧) − 1) = ((exp‘𝑤) − 1))
28 id 19 . . . . . . . . . . . . . 14 (𝑧 = 𝑤𝑧 = 𝑤)
2927, 28oveq12d 5896 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑤) − 1) / 𝑤))
30 simplr 528 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
3130, 13sylibr 134 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0})
32 efcl 11675 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
33 peano2cnm 8226 . . . . . . . . . . . . . . . 16 ((exp‘𝑤) ∈ ℂ → ((exp‘𝑤) − 1) ∈ ℂ)
3414, 32, 333syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((exp‘𝑤) − 1) ∈ ℂ)
35 simprr 531 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 𝑤 # 0)
3634, 14, 35divclapd 8750 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
3736adantr 276 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
3825, 29, 31, 37fvmptd3 5612 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3938fvoveq1d 5900 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) = (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)))
40 1cnd 7976 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 1 ∈ ℂ)
4137, 40subcld 8271 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
4241abscld 11193 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
43 simplrl 535 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ ℂ)
4443abscld 11193 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) ∈ ℝ)
45 simpll 527 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ+)
4645rpred 9699 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ)
47 abscl 11063 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
4847ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ)
4932ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) ∈ ℂ)
50 subcl 8159 . . . . . . . . . . . . . . . . . . . . 21 (((exp‘𝑤) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘𝑤) − 1) ∈ ℂ)
5149, 8, 50sylancl 413 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − 1) ∈ ℂ)
52 simpll 527 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 𝑤 ∈ ℂ)
53 simplr 528 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 𝑤 # 0)
5451, 52, 53divclapd 8750 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
55 1cnd 7976 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℂ)
5654, 55subcld 8271 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
5756abscld 11193 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
5848, 57remulcld 7991 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ∈ ℝ)
5948resqcld 10683 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℝ)
60 3re 8996 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
61 4nn 9085 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
62 nndivre 8958 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 4 ∈ ℕ) → (3 / 4) ∈ ℝ)
6360, 61, 62mp2an 426 . . . . . . . . . . . . . . . . 17 (3 / 4) ∈ ℝ
64 remulcl 7942 . . . . . . . . . . . . . . . . 17 ((((abs‘𝑤)↑2) ∈ ℝ ∧ (3 / 4) ∈ ℝ) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6559, 63, 64sylancl 413 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6651, 52subcld 8271 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) ∈ ℂ)
6766, 52, 53divcanap2d 8752 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (((exp‘𝑤) − 1) − 𝑤))
6851, 52, 52, 53divsubdirapd 8790 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)))
6952, 53dividapd 8746 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 𝑤) = 1)
7069oveq2d 5894 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7168, 70eqtrd 2210 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7271oveq2d 5894 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)))
7349, 55, 52subsub4d 8302 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = ((exp‘𝑤) − (1 + 𝑤)))
74 addcl 7939 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (1 + 𝑤) ∈ ℂ)
758, 52, 74sylancr 414 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (1 + 𝑤) ∈ ℂ)
76 2nn0 9196 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℕ0
77 eqid 2177 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))
7877eftlcl 11699 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ ℂ ∧ 2 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
7952, 76, 78sylancl 413 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
80 df-2 8981 . . . . . . . . . . . . . . . . . . . . . . . 24 2 = (1 + 1)
81 1nn0 9195 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
82 1e0p1 9428 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
83 0nn0 9194 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
84 0cnd 7953 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 ∈ ℂ)
8577efval2 11676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
8685ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
87 nn0uz 9565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (ℤ‘0)
8887sumeq1i 11374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)
8986, 88eqtr2di 2227 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = (exp‘𝑤))
9089oveq2d 5894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = (0 + (exp‘𝑤)))
9149addid2d 8110 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + (exp‘𝑤)) = (exp‘𝑤))
9290, 91eqtr2d 2211 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
93 eft0val 11704 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℂ → ((𝑤↑0) / (!‘0)) = 1)
9493ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑0) / (!‘0)) = 1)
9594oveq2d 5894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = (0 + 1))
9695, 82eqtr4di 2228 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = 1)
9777, 82, 83, 52, 84, 92, 96efsep 11702 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (1 + Σ𝑘 ∈ (ℤ‘1)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
98 exp1 10529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (𝑤↑1) = 𝑤)
9998ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤↑1) = 𝑤)
10099oveq1d 5893 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / (!‘1)))
101 fac1 10712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (!‘1) = 1
102101oveq2i 5889 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 / (!‘1)) = (𝑤 / 1)
103100, 102eqtrdi 2226 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / 1))
104 div1 8663 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℂ → (𝑤 / 1) = 𝑤)
105104ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 1) = 𝑤)
106103, 105eqtrd 2210 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = 𝑤)
107106oveq2d 5894 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (1 + ((𝑤↑1) / (!‘1))) = (1 + 𝑤))
10877, 80, 81, 52, 55, 97, 107efsep 11702 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = ((1 + 𝑤) + Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
10975, 79, 108mvrladdd 8327 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − (1 + 𝑤)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11073, 109eqtrd 2210 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11167, 72, 1103eqtr3d 2218 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
112111fveq2d 5521 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
11352, 56absmuld 11206 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
114112, 113eqtr3d 2212 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
115 eqid 2177 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛)))
116 eqid 2177 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛)))
117 2nn 9083 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
118117a1i 9 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 2 ∈ ℕ)
119 1red 7975 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℝ)
120 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) < 1)
12148, 119, 120ltled 8079 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ≤ 1)
12277, 115, 116, 118, 52, 121eftlub 11701 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
123114, 122eqbrtrrd 4029 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
124 df-3 8982 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
125 fac2 10714 . . . . . . . . . . . . . . . . . . . . 21 (!‘2) = 2
126125oveq1i 5888 . . . . . . . . . . . . . . . . . . . 20 ((!‘2) · 2) = (2 · 2)
127 2t2e4 9076 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
128126, 127eqtr2i 2199 . . . . . . . . . . . . . . . . . . 19 4 = ((!‘2) · 2)
129124, 128oveq12i 5890 . . . . . . . . . . . . . . . . . 18 (3 / 4) = ((2 + 1) / ((!‘2) · 2))
130129oveq2i 5889 . . . . . . . . . . . . . . . . 17 (((abs‘𝑤)↑2) · (3 / 4)) = (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2)))
131123, 130breqtrrdi 4047 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · (3 / 4)))
13263a1i 9 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ∈ ℝ)
13348sqge0d 10684 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 ≤ ((abs‘𝑤)↑2))
134 1re 7959 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
135 3lt4 9094 . . . . . . . . . . . . . . . . . . . . . 22 3 < 4
136 4cn 9000 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
137136mulid1i 7962 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 1) = 4
138135, 137breqtrri 4032 . . . . . . . . . . . . . . . . . . . . 21 3 < (4 · 1)
139 4re 8999 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
140 4pos 9019 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 4
141139, 140pm3.2i 272 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℝ ∧ 0 < 4)
142 ltdivmul 8836 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℝ ∧ 1 ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((3 / 4) < 1 ↔ 3 < (4 · 1)))
14360, 134, 141, 142mp3an 1337 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 4) < 1 ↔ 3 < (4 · 1))
144138, 143mpbir 146 . . . . . . . . . . . . . . . . . . . 20 (3 / 4) < 1
14563, 134, 144ltleii 8063 . . . . . . . . . . . . . . . . . . 19 (3 / 4) ≤ 1
146145a1i 9 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ≤ 1)
147132, 119, 59, 133, 146lemul2ad 8900 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ (((abs‘𝑤)↑2) · 1))
14848recnd 7989 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℂ)
149148sqcld 10655 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℂ)
150149mulridd 7977 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · 1) = ((abs‘𝑤)↑2))
151147, 150breqtrd 4031 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ ((abs‘𝑤)↑2))
15258, 65, 59, 131, 151letrd 8084 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤)↑2))
153148sqvald 10654 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) = ((abs‘𝑤) · (abs‘𝑤)))
154152, 153breqtrd 4031 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤)))
155 absgt0ap 11111 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (𝑤 # 0 ↔ 0 < (abs‘𝑤)))
156155ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 # 0 ↔ 0 < (abs‘𝑤)))
15753, 156mpbid 147 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 < (abs‘𝑤))
15848, 157elrpd 9696 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ+)
15957, 48, 158lemul2d 9744 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤) ↔ ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤))))
160154, 159mpbird 167 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
161160ad2ant2l 508 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
162 simprl 529 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) < 𝑥)
16342, 44, 46, 161, 162lelttrd 8085 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) < 𝑥)
16439, 163eqbrtrd 4027 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
165164ex 115 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16624, 165sylbid 150 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < ) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
167166adantld 278 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16813, 167sylan2b 287 . . . . . 6 ((𝑥 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0}) → ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
169168ralrimiva 2550 . . . . 5 (𝑥 ∈ ℝ+ → ∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
170 brimralrspcev 4064 . . . . 5 ((inf({𝑥, 1}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
17111, 169, 170syl2anc 411 . . . 4 (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
172171rgen 2530 . . 3 𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
173 elrabi 2892 . . . . . . . . . 10 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 𝑧 ∈ ℂ)
174 efcl 11675 . . . . . . . . . 10 (𝑧 ∈ ℂ → (exp‘𝑧) ∈ ℂ)
175173, 174syl 14 . . . . . . . . 9 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (exp‘𝑧) ∈ ℂ)
176 1cnd 7976 . . . . . . . . 9 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 1 ∈ ℂ)
177175, 176subcld 8271 . . . . . . . 8 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → ((exp‘𝑧) − 1) ∈ ℂ)
178 breq1 4008 . . . . . . . . . 10 (𝑢 = 𝑧 → (𝑢 # 0 ↔ 𝑧 # 0))
179178elrab 2895 . . . . . . . . 9 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
180179simprbi 275 . . . . . . . 8 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 𝑧 # 0)
181177, 173, 180divclapd 8750 . . . . . . 7 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − 1) / 𝑧) ∈ ℂ)
18225, 181fmpti 5671 . . . . . 6 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)):{𝑢 ∈ ℂ ∣ 𝑢 # 0}⟶ℂ
183182a1i 9 . . . . 5 (⊤ → (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)):{𝑢 ∈ ℂ ∣ 𝑢 # 0}⟶ℂ)
184 apsscn 8607 . . . . . 6 {𝑢 ∈ ℂ ∣ 𝑢 # 0} ⊆ ℂ
185184a1i 9 . . . . 5 (⊤ → {𝑢 ∈ ℂ ∣ 𝑢 # 0} ⊆ ℂ)
186 0cnd 7953 . . . . 5 (⊤ → 0 ∈ ℂ)
187183, 185, 186ellimc3ap 14318 . . . 4 (⊤ → (1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))))
188187mptru 1362 . . 3 (1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)))
1898, 172, 188mpbir2an 942 . 2 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)
1902cntoptopon 14220 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
191190toponrestid 13709 . . . 4 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
192173subid1d 8260 . . . . . . 7 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (𝑧 − 0) = 𝑧)
193192oveq2d 5894 . . . . . 6 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)) = (((exp‘𝑧) − (exp‘0)) / 𝑧))
194 ef0 11683 . . . . . . . 8 (exp‘0) = 1
195194oveq2i 5889 . . . . . . 7 ((exp‘𝑧) − (exp‘0)) = ((exp‘𝑧) − 1)
196195oveq1i 5888 . . . . . 6 (((exp‘𝑧) − (exp‘0)) / 𝑧) = (((exp‘𝑧) − 1) / 𝑧)
197193, 196eqtr2di 2227 . . . . 5 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
198197mpteq2ia 4091 . . . 4 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
199 ssidd 3178 . . . 4 (⊤ → ℂ ⊆ ℂ)
200 eff 11674 . . . . 5 exp:ℂ⟶ℂ
201200a1i 9 . . . 4 (⊤ → exp:ℂ⟶ℂ)
202191, 2, 198, 199, 201, 199eldvap 14339 . . 3 (⊤ → (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0))))
203202mptru 1362 . 2 (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)))
2047, 189, 203mpbir2an 942 1 0(ℂ D exp)1
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wtru 1354  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3131  {cpr 3595   class class class wbr 4005  cmpt 4066  ccom 4632  wf 5214  cfv 5218  (class class class)co 5878  infcinf 6985  cc 7812  cr 7813  0cc0 7814  1c1 7815   + caddc 7817   · cmul 7819   < clt 7995  cle 7996  cmin 8131   # cap 8541   / cdiv 8632  cn 8922  2c2 8973  3c3 8974  4c4 8975  0cn0 9179  cuz 9531  +crp 9656  cexp 10522  !cfa 10708  abscabs 11009  Σcsu 11364  expce 11653  MetOpencmopn 13619  Topctop 13685  intcnt 13781   lim climc 14311   D cdv 14312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-map 6653  df-pm 6654  df-en 6744  df-dom 6745  df-fin 6746  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-xneg 9775  df-xadd 9776  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-ihash 10759  df-shft 10827  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365  df-ef 11659  df-rest 12696  df-topgen 12715  df-psmet 13621  df-xmet 13622  df-met 13623  df-bl 13624  df-mopn 13625  df-top 13686  df-topon 13699  df-bases 13731  df-ntr 13784  df-limced 14313  df-dvap 14314
This theorem is referenced by:  dvef  14376
  Copyright terms: Public domain W3C validator