ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveflem GIF version

Theorem dveflem 12895
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub 11433, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dveflem 0(ℂ D exp)1

Proof of Theorem dveflem
Dummy variables 𝑘 𝑛 𝑤 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 7782 . . 3 0 ∈ ℂ
2 eqid 2140 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
32cntoptop 12741 . . . 4 (MetOpen‘(abs ∘ − )) ∈ Top
4 unicntopcntop 12744 . . . . 5 ℂ = (MetOpen‘(abs ∘ − ))
54ntrtop 12336 . . . 4 ((MetOpen‘(abs ∘ − )) ∈ Top → ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ)
63, 5ax-mp 5 . . 3 ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) = ℂ
71, 6eleqtrri 2216 . 2 0 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ)
8 ax-1cn 7737 . . 3 1 ∈ ℂ
9 1rp 9474 . . . . . 6 1 ∈ ℝ+
10 rpmincl 11041 . . . . . 6 ((𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+) → inf({𝑥, 1}, ℝ, < ) ∈ ℝ+)
119, 10mpan2 422 . . . . 5 (𝑥 ∈ ℝ+ → inf({𝑥, 1}, ℝ, < ) ∈ ℝ+)
12 breq1 3940 . . . . . . . 8 (𝑢 = 𝑤 → (𝑢 # 0 ↔ 𝑤 # 0))
1312elrab 2844 . . . . . . 7 (𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
14 simprl 521 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 𝑤 ∈ ℂ)
1514subid1d 8086 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (𝑤 − 0) = 𝑤)
1615fveq2d 5433 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (abs‘(𝑤 − 0)) = (abs‘𝑤))
1716breq1d 3947 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < ) ↔ (abs‘𝑤) < inf({𝑥, 1}, ℝ, < )))
1814abscld 10985 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (abs‘𝑤) ∈ ℝ)
19 rpre 9477 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2019adantr 274 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 𝑥 ∈ ℝ)
21 1red 7805 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 1 ∈ ℝ)
22 ltmininf 11038 . . . . . . . . . . 11 (((abs‘𝑤) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑤) < inf({𝑥, 1}, ℝ, < ) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2318, 20, 21, 22syl3anc 1217 . . . . . . . . . 10 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘𝑤) < inf({𝑥, 1}, ℝ, < ) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
2417, 23bitrd 187 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < ) ↔ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)))
25 eqid 2140 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))
26 fveq2 5429 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (exp‘𝑧) = (exp‘𝑤))
2726oveq1d 5797 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((exp‘𝑧) − 1) = ((exp‘𝑤) − 1))
28 id 19 . . . . . . . . . . . . . 14 (𝑧 = 𝑤𝑧 = 𝑤)
2927, 28oveq12d 5800 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑤) − 1) / 𝑤))
30 simplr 520 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
3130, 13sylibr 133 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0})
32 efcl 11407 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
33 peano2cnm 8052 . . . . . . . . . . . . . . . 16 ((exp‘𝑤) ∈ ℂ → ((exp‘𝑤) − 1) ∈ ℂ)
3414, 32, 333syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((exp‘𝑤) − 1) ∈ ℂ)
35 simprr 522 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → 𝑤 # 0)
3634, 14, 35divclapd 8574 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
3736adantr 274 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
3825, 29, 31, 37fvmptd3 5522 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) = (((exp‘𝑤) − 1) / 𝑤))
3938fvoveq1d 5804 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) = (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)))
40 1cnd 7806 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 1 ∈ ℂ)
4137, 40subcld 8097 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
4241abscld 10985 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
43 simplrl 525 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑤 ∈ ℂ)
4443abscld 10985 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) ∈ ℝ)
45 simpll 519 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ+)
4645rpred 9513 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → 𝑥 ∈ ℝ)
47 abscl 10855 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (abs‘𝑤) ∈ ℝ)
4847ad2antrr 480 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ)
4932ad2antrr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) ∈ ℂ)
50 subcl 7985 . . . . . . . . . . . . . . . . . . . . 21 (((exp‘𝑤) ∈ ℂ ∧ 1 ∈ ℂ) → ((exp‘𝑤) − 1) ∈ ℂ)
5149, 8, 50sylancl 410 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − 1) ∈ ℂ)
52 simpll 519 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 𝑤 ∈ ℂ)
53 simplr 520 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 𝑤 # 0)
5451, 52, 53divclapd 8574 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) / 𝑤) ∈ ℂ)
55 1cnd 7806 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℂ)
5654, 55subcld 8097 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − 1) ∈ ℂ)
5756abscld 10985 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ∈ ℝ)
5848, 57remulcld 7820 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ∈ ℝ)
5948resqcld 10481 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℝ)
60 3re 8818 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
61 4nn 8907 . . . . . . . . . . . . . . . . . 18 4 ∈ ℕ
62 nndivre 8780 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℝ ∧ 4 ∈ ℕ) → (3 / 4) ∈ ℝ)
6360, 61, 62mp2an 423 . . . . . . . . . . . . . . . . 17 (3 / 4) ∈ ℝ
64 remulcl 7772 . . . . . . . . . . . . . . . . 17 ((((abs‘𝑤)↑2) ∈ ℝ ∧ (3 / 4) ∈ ℝ) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6559, 63, 64sylancl 410 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ∈ ℝ)
6651, 52subcld 8097 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) ∈ ℂ)
6766, 52, 53divcanap2d 8576 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (((exp‘𝑤) − 1) − 𝑤))
6851, 52, 52, 53divsubdirapd 8614 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)))
6952, 53dividapd 8570 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 𝑤) = 1)
7069oveq2d 5798 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) / 𝑤) − (𝑤 / 𝑤)) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7168, 70eqtrd 2173 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((((exp‘𝑤) − 1) − 𝑤) / 𝑤) = ((((exp‘𝑤) − 1) / 𝑤) − 1))
7271oveq2d 5798 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) − 𝑤) / 𝑤)) = (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)))
7349, 55, 52subsub4d 8128 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = ((exp‘𝑤) − (1 + 𝑤)))
74 addcl 7769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (1 + 𝑤) ∈ ℂ)
758, 52, 74sylancr 411 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (1 + 𝑤) ∈ ℂ)
76 2nn0 9018 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℕ0
77 eqid 2140 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))
7877eftlcl 11431 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ ℂ ∧ 2 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
7952, 76, 78sylancl 410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
80 df-2 8803 . . . . . . . . . . . . . . . . . . . . . . . 24 2 = (1 + 1)
81 1nn0 9017 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ0
82 1e0p1 9247 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
83 0nn0 9016 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℕ0
84 0cnd 7783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 ∈ ℂ)
8577efval2 11408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
8685ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
87 nn0uz 9384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (ℤ‘0)
8887sumeq1i 11164 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Σ𝑘 ∈ ℕ0 ((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)
8986, 88eqtr2di 2190 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘) = (exp‘𝑤))
9089oveq2d 5798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = (0 + (exp‘𝑤)))
9149addid2d 7936 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + (exp‘𝑤)) = (exp‘𝑤))
9290, 91eqtr2d 2174 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (0 + Σ𝑘 ∈ (ℤ‘0)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
93 eft0val 11436 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ ℂ → ((𝑤↑0) / (!‘0)) = 1)
9493ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑0) / (!‘0)) = 1)
9594oveq2d 5798 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = (0 + 1))
9695, 82eqtr4di 2191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (0 + ((𝑤↑0) / (!‘0))) = 1)
9777, 82, 83, 52, 84, 92, 96efsep 11434 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = (1 + Σ𝑘 ∈ (ℤ‘1)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
98 exp1 10330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ ℂ → (𝑤↑1) = 𝑤)
9998ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤↑1) = 𝑤)
10099oveq1d 5797 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / (!‘1)))
101 fac1 10507 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (!‘1) = 1
102101oveq2i 5793 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 / (!‘1)) = (𝑤 / 1)
103100, 102eqtrdi 2189 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = (𝑤 / 1))
104 div1 8487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ ℂ → (𝑤 / 1) = 𝑤)
105104ad2antrr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 / 1) = 𝑤)
106103, 105eqtrd 2173 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((𝑤↑1) / (!‘1)) = 𝑤)
107106oveq2d 5798 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (1 + ((𝑤↑1) / (!‘1))) = (1 + 𝑤))
10877, 80, 81, 52, 55, 97, 107efsep 11434 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (exp‘𝑤) = ((1 + 𝑤) + Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
10975, 79, 108mvrladdd 8153 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((exp‘𝑤) − (1 + 𝑤)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11073, 109eqtrd 2173 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((exp‘𝑤) − 1) − 𝑤) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
11167, 72, 1103eqtr3d 2181 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1)) = Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘))
112111fveq2d 5433 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)))
11352, 56absmuld 10998 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘(𝑤 · ((((exp‘𝑤) − 1) / 𝑤) − 1))) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
114112, 113eqtr3d 2175 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) = ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))))
115 eqid 2140 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝑤)↑𝑛) / (!‘𝑛)))
116 eqid 2140 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝑤)↑2) / (!‘2)) · ((1 / (2 + 1))↑𝑛)))
117 2nn 8905 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
118117a1i 9 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 2 ∈ ℕ)
119 1red 7805 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 1 ∈ ℝ)
120 simpr 109 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) < 1)
12148, 119, 120ltled 7905 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ≤ 1)
12277, 115, 116, 118, 52, 121eftlub 11433 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘Σ𝑘 ∈ (ℤ‘2)((𝑛 ∈ ℕ0 ↦ ((𝑤𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
123114, 122eqbrtrrd 3960 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2))))
124 df-3 8804 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
125 fac2 10509 . . . . . . . . . . . . . . . . . . . . 21 (!‘2) = 2
126125oveq1i 5792 . . . . . . . . . . . . . . . . . . . 20 ((!‘2) · 2) = (2 · 2)
127 2t2e4 8898 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
128126, 127eqtr2i 2162 . . . . . . . . . . . . . . . . . . 19 4 = ((!‘2) · 2)
129124, 128oveq12i 5794 . . . . . . . . . . . . . . . . . 18 (3 / 4) = ((2 + 1) / ((!‘2) · 2))
130129oveq2i 5793 . . . . . . . . . . . . . . . . 17 (((abs‘𝑤)↑2) · (3 / 4)) = (((abs‘𝑤)↑2) · ((2 + 1) / ((!‘2) · 2)))
131123, 130breqtrrdi 3978 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ (((abs‘𝑤)↑2) · (3 / 4)))
13263a1i 9 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ∈ ℝ)
13348sqge0d 10482 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 ≤ ((abs‘𝑤)↑2))
134 1re 7789 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
135 3lt4 8916 . . . . . . . . . . . . . . . . . . . . . 22 3 < 4
136 4cn 8822 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℂ
137136mulid1i 7792 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 1) = 4
138135, 137breqtrri 3963 . . . . . . . . . . . . . . . . . . . . 21 3 < (4 · 1)
139 4re 8821 . . . . . . . . . . . . . . . . . . . . . . 23 4 ∈ ℝ
140 4pos 8841 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 4
141139, 140pm3.2i 270 . . . . . . . . . . . . . . . . . . . . . 22 (4 ∈ ℝ ∧ 0 < 4)
142 ltdivmul 8658 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℝ ∧ 1 ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((3 / 4) < 1 ↔ 3 < (4 · 1)))
14360, 134, 141, 142mp3an 1316 . . . . . . . . . . . . . . . . . . . . 21 ((3 / 4) < 1 ↔ 3 < (4 · 1))
144138, 143mpbir 145 . . . . . . . . . . . . . . . . . . . 20 (3 / 4) < 1
14563, 134, 144ltleii 7890 . . . . . . . . . . . . . . . . . . 19 (3 / 4) ≤ 1
146145a1i 9 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (3 / 4) ≤ 1)
147132, 119, 59, 133, 146lemul2ad 8722 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ (((abs‘𝑤)↑2) · 1))
14848recnd 7818 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℂ)
149148sqcld 10453 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) ∈ ℂ)
150149mulid1d 7807 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · 1) = ((abs‘𝑤)↑2))
151147, 150breqtrd 3962 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (((abs‘𝑤)↑2) · (3 / 4)) ≤ ((abs‘𝑤)↑2))
15258, 65, 59, 131, 151letrd 7910 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤)↑2))
153148sqvald 10452 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤)↑2) = ((abs‘𝑤) · (abs‘𝑤)))
154152, 153breqtrd 3962 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤)))
155 absgt0ap 10903 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → (𝑤 # 0 ↔ 0 < (abs‘𝑤)))
156155ad2antrr 480 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (𝑤 # 0 ↔ 0 < (abs‘𝑤)))
15753, 156mpbid 146 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → 0 < (abs‘𝑤))
15848, 157elrpd 9510 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘𝑤) ∈ ℝ+)
15957, 48, 158lemul2d 9558 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → ((abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤) ↔ ((abs‘𝑤) · (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1))) ≤ ((abs‘𝑤) · (abs‘𝑤))))
160154, 159mpbird 166 . . . . . . . . . . . . 13 (((𝑤 ∈ ℂ ∧ 𝑤 # 0) ∧ (abs‘𝑤) < 1) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
161160ad2ant2l 500 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) ≤ (abs‘𝑤))
162 simprl 521 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘𝑤) < 𝑥)
16342, 44, 46, 161, 162lelttrd 7911 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘((((exp‘𝑤) − 1) / 𝑤) − 1)) < 𝑥)
16439, 163eqbrtrd 3958 . . . . . . . . . 10 (((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) ∧ ((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1)) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
165164ex 114 . . . . . . . . 9 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → (((abs‘𝑤) < 𝑥 ∧ (abs‘𝑤) < 1) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16624, 165sylbid 149 . . . . . . . 8 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < ) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
167166adantld 276 . . . . . . 7 ((𝑥 ∈ ℝ+ ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) → ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
16813, 167sylan2b 285 . . . . . 6 ((𝑥 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0}) → ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
169168ralrimiva 2508 . . . . 5 (𝑥 ∈ ℝ+ → ∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
170 brimralrspcev 3995 . . . . 5 ((inf({𝑥, 1}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < inf({𝑥, 1}, ℝ, < )) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
17111, 169, 170syl2anc 409 . . . 4 (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))
172171rgen 2488 . . 3 𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)
173 elrabi 2841 . . . . . . . . . 10 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 𝑧 ∈ ℂ)
174 efcl 11407 . . . . . . . . . 10 (𝑧 ∈ ℂ → (exp‘𝑧) ∈ ℂ)
175173, 174syl 14 . . . . . . . . 9 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (exp‘𝑧) ∈ ℂ)
176 1cnd 7806 . . . . . . . . 9 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 1 ∈ ℂ)
177175, 176subcld 8097 . . . . . . . 8 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → ((exp‘𝑧) − 1) ∈ ℂ)
178 breq1 3940 . . . . . . . . . 10 (𝑢 = 𝑧 → (𝑢 # 0 ↔ 𝑧 # 0))
179178elrab 2844 . . . . . . . . 9 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↔ (𝑧 ∈ ℂ ∧ 𝑧 # 0))
180179simprbi 273 . . . . . . . 8 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → 𝑧 # 0)
181177, 173, 180divclapd 8574 . . . . . . 7 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − 1) / 𝑧) ∈ ℂ)
18225, 181fmpti 5580 . . . . . 6 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)):{𝑢 ∈ ℂ ∣ 𝑢 # 0}⟶ℂ
183182a1i 9 . . . . 5 (⊤ → (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)):{𝑢 ∈ ℂ ∣ 𝑢 # 0}⟶ℂ)
184 apsscn 8433 . . . . . 6 {𝑢 ∈ ℂ ∣ 𝑢 # 0} ⊆ ℂ
185184a1i 9 . . . . 5 (⊤ → {𝑢 ∈ ℂ ∣ 𝑢 # 0} ⊆ ℂ)
186 0cnd 7783 . . . . 5 (⊤ → 0 ∈ ℂ)
187183, 185, 186ellimc3ap 12838 . . . 4 (⊤ → (1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥))))
188187mptru 1341 . . 3 (1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0) ↔ (1 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ((𝑤 # 0 ∧ (abs‘(𝑤 − 0)) < 𝑦) → (abs‘(((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧))‘𝑤) − 1)) < 𝑥)))
1898, 172, 188mpbir2an 927 . 2 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)
1902cntoptopon 12740 . . . . 5 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
191190toponrestid 12227 . . . 4 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
192173subid1d 8086 . . . . . . 7 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (𝑧 − 0) = 𝑧)
193192oveq2d 5798 . . . . . 6 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)) = (((exp‘𝑧) − (exp‘0)) / 𝑧))
194 ef0 11415 . . . . . . . 8 (exp‘0) = 1
195194oveq2i 5793 . . . . . . 7 ((exp‘𝑧) − (exp‘0)) = ((exp‘𝑧) − 1)
196195oveq1i 5792 . . . . . 6 (((exp‘𝑧) − (exp‘0)) / 𝑧) = (((exp‘𝑧) − 1) / 𝑧)
197193, 196eqtr2di 2190 . . . . 5 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} → (((exp‘𝑧) − 1) / 𝑧) = (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
198197mpteq2ia 4022 . . . 4 (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) = (𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − (exp‘0)) / (𝑧 − 0)))
199 ssidd 3123 . . . 4 (⊤ → ℂ ⊆ ℂ)
200 eff 11406 . . . . 5 exp:ℂ⟶ℂ
201200a1i 9 . . . 4 (⊤ → exp:ℂ⟶ℂ)
202191, 2, 198, 199, 201, 199eldvap 12859 . . 3 (⊤ → (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0))))
203202mptru 1341 . 2 (0(ℂ D exp)1 ↔ (0 ∈ ((int‘(MetOpen‘(abs ∘ − )))‘ℂ) ∧ 1 ∈ ((𝑧 ∈ {𝑢 ∈ ℂ ∣ 𝑢 # 0} ↦ (((exp‘𝑧) − 1) / 𝑧)) lim 0)))
2047, 189, 203mpbir2an 927 1 0(ℂ D exp)1
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wtru 1333  wcel 1481  wral 2417  wrex 2418  {crab 2421  wss 3076  {cpr 3533   class class class wbr 3937  cmpt 3997  ccom 4551  wf 5127  cfv 5131  (class class class)co 5782  infcinf 6878  cc 7642  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cmin 7957   # cap 8367   / cdiv 8456  cn 8744  2c2 8795  3c3 8796  4c4 8797  0cn0 9001  cuz 9350  +crp 9470  cexp 10323  !cfa 10503  abscabs 10801  Σcsu 11154  expce 11385  MetOpencmopn 12193  Topctop 12203  intcnt 12301   lim climc 12831   D cdv 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-map 6552  df-pm 6553  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-xneg 9589  df-xadd 9590  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-rest 12161  df-topgen 12180  df-psmet 12195  df-xmet 12196  df-met 12197  df-bl 12198  df-mopn 12199  df-top 12204  df-topon 12217  df-bases 12249  df-ntr 12304  df-limced 12833  df-dvap 12834
This theorem is referenced by:  dvef  12896
  Copyright terms: Public domain W3C validator