![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvopab | GIF version |
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
cbvopab.1 | ⊢ Ⅎ𝑧𝜑 |
cbvopab.2 | ⊢ Ⅎ𝑤𝜑 |
cbvopab.3 | ⊢ Ⅎ𝑥𝜓 |
cbvopab.4 | ⊢ Ⅎ𝑦𝜓 |
cbvopab.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopab | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑧 𝑣 = ⟨𝑥, 𝑦⟩ | |
2 | cbvopab.1 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
3 | 1, 2 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑧(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
4 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑤 𝑣 = ⟨𝑥, 𝑦⟩ | |
5 | cbvopab.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
6 | 4, 5 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
7 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑥 𝑣 = ⟨𝑧, 𝑤⟩ | |
8 | cbvopab.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
9 | 7, 8 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑥(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓) |
10 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑦 𝑣 = ⟨𝑧, 𝑤⟩ | |
11 | cbvopab.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
12 | 10, 11 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑦(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓) |
13 | opeq12 3781 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩) | |
14 | 13 | eqeq2d 2189 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑧, 𝑤⟩)) |
15 | cbvopab.5 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
16 | 14, 15 | anbi12d 473 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓))) |
17 | 3, 6, 9, 12, 16 | cbvex2 1922 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)) |
18 | 17 | abbii 2293 | . 2 ⊢ {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)} |
19 | df-opab 4066 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
20 | df-opab 4066 | . 2 ⊢ {⟨𝑧, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)} | |
21 | 18, 19, 20 | 3eqtr4i 2208 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 {cab 2163 ⟨cop 3596 {copab 4064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-opab 4066 |
This theorem is referenced by: cbvopabv 4076 opelopabsb 4261 |
Copyright terms: Public domain | W3C validator |