| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvopab | GIF version | ||
| Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| cbvopab.1 | ⊢ Ⅎ𝑧𝜑 |
| cbvopab.2 | ⊢ Ⅎ𝑤𝜑 |
| cbvopab.3 | ⊢ Ⅎ𝑥𝜓 |
| cbvopab.4 | ⊢ Ⅎ𝑦𝜓 |
| cbvopab.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvopab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑧 𝑣 = 〈𝑥, 𝑦〉 | |
| 2 | cbvopab.1 | . . . . 5 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 1, 2 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑧(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑤 𝑣 = 〈𝑥, 𝑦〉 | |
| 5 | cbvopab.2 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
| 6 | 4, 5 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑤(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 7 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑥 𝑣 = 〈𝑧, 𝑤〉 | |
| 8 | cbvopab.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 9 | 7, 8 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑥(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓) |
| 10 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑦 𝑣 = 〈𝑧, 𝑤〉 | |
| 11 | cbvopab.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 12 | 10, 11 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑦(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓) |
| 13 | opeq12 3810 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) | |
| 14 | 13 | eqeq2d 2208 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 〈𝑥, 𝑦〉 ↔ 𝑣 = 〈𝑧, 𝑤〉)) |
| 15 | cbvopab.5 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 16 | 14, 15 | anbi12d 473 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓))) |
| 17 | 3, 6, 9, 12, 16 | cbvex2 1937 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)) |
| 18 | 17 | abbii 2312 | . 2 ⊢ {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} |
| 19 | df-opab 4095 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 20 | df-opab 4095 | . 2 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜓} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} | |
| 21 | 18, 19, 20 | 3eqtr4i 2227 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 {cab 2182 〈cop 3625 {copab 4093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 |
| This theorem is referenced by: cbvopabv 4105 opelopabsb 4294 |
| Copyright terms: Public domain | W3C validator |