ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab GIF version

Theorem cbvopab 4100
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.)
Hypotheses
Ref Expression
cbvopab.1 𝑧𝜑
cbvopab.2 𝑤𝜑
cbvopab.3 𝑥𝜓
cbvopab.4 𝑦𝜓
cbvopab.5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbvopab {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvopab
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . 5 𝑧 𝑣 = ⟨𝑥, 𝑦
2 cbvopab.1 . . . . 5 𝑧𝜑
31, 2nfan 1576 . . . 4 𝑧(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
4 nfv 1539 . . . . 5 𝑤 𝑣 = ⟨𝑥, 𝑦
5 cbvopab.2 . . . . 5 𝑤𝜑
64, 5nfan 1576 . . . 4 𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
7 nfv 1539 . . . . 5 𝑥 𝑣 = ⟨𝑧, 𝑤
8 cbvopab.3 . . . . 5 𝑥𝜓
97, 8nfan 1576 . . . 4 𝑥(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)
10 nfv 1539 . . . . 5 𝑦 𝑣 = ⟨𝑧, 𝑤
11 cbvopab.4 . . . . 5 𝑦𝜓
1210, 11nfan 1576 . . . 4 𝑦(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)
13 opeq12 3806 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
1413eqeq2d 2205 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑧, 𝑤⟩))
15 cbvopab.5 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
1614, 15anbi12d 473 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)))
173, 6, 9, 12, 16cbvex2 1934 . . 3 (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓))
1817abbii 2309 . 2 {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
19 df-opab 4091 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
20 df-opab 4091 . 2 {⟨𝑧, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
2118, 19, 203eqtr4i 2224 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wnf 1471  wex 1503  {cab 2179  cop 3621  {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091
This theorem is referenced by:  cbvopabv  4101  opelopabsb  4290
  Copyright terms: Public domain W3C validator