ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvopab1 GIF version

Theorem cbvopab1 3996
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
cbvopab1.1 𝑧𝜑
cbvopab1.2 𝑥𝜓
cbvopab1.3 (𝑥 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
cbvopab1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem cbvopab1
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
2 nfv 1508 . . . . . . 7 𝑥 𝑤 = ⟨𝑣, 𝑦
3 nfs1v 1910 . . . . . . 7 𝑥[𝑣 / 𝑥]𝜑
42, 3nfan 1544 . . . . . 6 𝑥(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
54nfex 1616 . . . . 5 𝑥𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
6 opeq1 3700 . . . . . . . 8 (𝑥 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑣, 𝑦⟩)
76eqeq2d 2149 . . . . . . 7 (𝑥 = 𝑣 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑣, 𝑦⟩))
8 sbequ12 1744 . . . . . . 7 (𝑥 = 𝑣 → (𝜑 ↔ [𝑣 / 𝑥]𝜑))
97, 8anbi12d 464 . . . . . 6 (𝑥 = 𝑣 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
109exbidv 1797 . . . . 5 (𝑥 = 𝑣 → (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)))
111, 5, 10cbvex 1729 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑))
12 nfv 1508 . . . . . . 7 𝑧 𝑤 = ⟨𝑣, 𝑦
13 cbvopab1.1 . . . . . . . 8 𝑧𝜑
1413nfsb 1917 . . . . . . 7 𝑧[𝑣 / 𝑥]𝜑
1512, 14nfan 1544 . . . . . 6 𝑧(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
1615nfex 1616 . . . . 5 𝑧𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑)
17 nfv 1508 . . . . 5 𝑣𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)
18 opeq1 3700 . . . . . . . 8 (𝑣 = 𝑧 → ⟨𝑣, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
1918eqeq2d 2149 . . . . . . 7 (𝑣 = 𝑧 → (𝑤 = ⟨𝑣, 𝑦⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
20 sbequ 1812 . . . . . . . 8 (𝑣 = 𝑧 → ([𝑣 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
21 cbvopab1.2 . . . . . . . . 9 𝑥𝜓
22 cbvopab1.3 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑𝜓))
2321, 22sbie 1764 . . . . . . . 8 ([𝑧 / 𝑥]𝜑𝜓)
2420, 23syl6bb 195 . . . . . . 7 (𝑣 = 𝑧 → ([𝑣 / 𝑥]𝜑𝜓))
2519, 24anbi12d 464 . . . . . 6 (𝑣 = 𝑧 → ((𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2625exbidv 1797 . . . . 5 (𝑣 = 𝑧 → (∃𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)))
2716, 17, 26cbvex 1729 . . . 4 (∃𝑣𝑦(𝑤 = ⟨𝑣, 𝑦⟩ ∧ [𝑣 / 𝑥]𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2811, 27bitri 183 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓))
2928abbii 2253 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
30 df-opab 3985 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31 df-opab 3985 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜓)}
3229, 30, 313eqtr4i 2168 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wnf 1436  wex 1468  [wsb 1735  {cab 2123  cop 3525  {copab 3983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-sn 3528  df-pr 3529  df-op 3531  df-opab 3985
This theorem is referenced by:  cbvopab1v  3999  cbvmptf  4017  cbvmpt  4018
  Copyright terms: Public domain W3C validator