ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrex GIF version

Theorem cbvrex 2762
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
cbvral.1 𝑦𝜑
cbvral.2 𝑥𝜓
cbvral.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrex (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvrex
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐴
2 nfcv 2372 . 2 𝑦𝐴
3 cbvral.1 . 2 𝑦𝜑
4 cbvral.2 . 2 𝑥𝜓
5 cbvral.3 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
61, 2, 3, 4, 5cbvrexf 2757 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1506  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  cbvrmo  2764  cbvrexv  2766  cbvrexsv  2782  cbviun  4002  disjiun  4078  rexxpf  4869  isarep1  5407  rexrnmpt  5780  elabrex  5887
  Copyright terms: Public domain W3C validator