| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coeq1d | GIF version | ||
| Description: Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.) |
| Ref | Expression |
|---|---|
| coeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| coeq1d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | coeq1 4833 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∘ ccom 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-in 3171 df-ss 3178 df-br 4044 df-opab 4105 df-co 4682 |
| This theorem is referenced by: coeq12d 4840 fcof1o 5848 mapen 6925 hashfacen 10962 znval 14316 znle2 14332 |
| Copyright terms: Public domain | W3C validator |