Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbconstg | GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). csbconstgf 3058 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | 1 | csbconstgf 3058 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ⦋csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: sbcel1g 3064 sbceq1g 3065 sbcel2g 3066 sbceq2g 3067 csbidmg 3101 sbcbr12g 4037 sbcbr1g 4038 sbcbr2g 4039 sbcrel 4690 csbcnvg 4788 csbresg 4887 sbcfung 5212 csbfv12g 5522 csbfv2g 5523 elfvmptrab 5581 csbov12g 5881 csbov1g 5882 csbov2g 5883 |
Copyright terms: Public domain | W3C validator |