| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbied | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfcvd 2373 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
| 3 | csbied.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | csbied.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 5 | 1, 2, 3, 4 | csbiedf 3165 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⦋csb 3124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: csbied2 3172 rspc2vd 3193 fvmptd 5708 seq3f1olemp 10724 fsumgcl 11883 fsum3 11884 fsumshftm 11942 fisum0diag2 11944 fprodseq 12080 fprodeq0 12114 imasival 13325 mulgfvalg 13644 znval 14585 psrval 14615 mplvalcoe 14639 fsumdvdsmul 15650 |
| Copyright terms: Public domain | W3C validator |