| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbied | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfcvd 2340 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
| 3 | csbied.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | csbied.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 5 | 1, 2, 3, 4 | csbiedf 3125 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⦋csb 3084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbied2 3132 rspc2vd 3153 fvmptd 5645 seq3f1olemp 10624 fsumgcl 11568 fsum3 11569 fsumshftm 11627 fisum0diag2 11629 fprodseq 11765 fprodeq0 11799 imasival 13008 mulgfvalg 13327 znval 14268 psrval 14296 fsumdvdsmul 15311 |
| Copyright terms: Public domain | W3C validator |