![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > csbied | GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
csbied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
csbied | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcvd 2337 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐶) | |
3 | csbied.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | csbied.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
5 | 1, 2, 3, 4 | csbiedf 3122 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ⦋csb 3081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sbc 2987 df-csb 3082 |
This theorem is referenced by: csbied2 3129 rspc2vd 3150 fvmptd 5639 seq3f1olemp 10589 fsumgcl 11532 fsum3 11533 fsumshftm 11591 fisum0diag2 11593 fprodseq 11729 fprodeq0 11763 imasival 12892 mulgfvalg 13194 znval 14135 psrval 14163 |
Copyright terms: Public domain | W3C validator |