ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbied GIF version

Theorem csbied 3105
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbied.1 (𝜑𝐴𝑉)
csbied.2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
csbied (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem csbied
StepHypRef Expression
1 nfv 1528 . 2 𝑥𝜑
2 nfcvd 2320 . 2 (𝜑𝑥𝐶)
3 csbied.1 . 2 (𝜑𝐴𝑉)
4 csbied.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)
51, 2, 3, 4csbiedf 3099 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by:  csbied2  3106  rspc2vd  3127  fvmptd  5599  seq3f1olemp  10504  fsumgcl  11396  fsum3  11397  fsumshftm  11455  fisum0diag2  11457  fprodseq  11593  fprodeq0  11627  imasival  12732  mulgfvalg  12990
  Copyright terms: Public domain W3C validator