ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemu2nd GIF version

Theorem ctiunctlemu2nd 12992
Description: Lemma for ctiunct 12997. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som (𝜑𝑆 ⊆ ω)
ctiunct.sdc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctiunct.f (𝜑𝐹:𝑆onto𝐴)
ctiunct.tom ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
ctiunct.tdc ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
ctiunct.g ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
ctiunct.j (𝜑𝐽:ω–1-1-onto→(ω × ω))
ctiunct.u 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
ctiunctlem.n (𝜑𝑁𝑈)
Assertion
Ref Expression
ctiunctlemu2nd (𝜑 → (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)
Distinct variable groups:   𝑧,𝐹   𝑧,𝐽   𝑧,𝑁   𝑧,𝑆   𝑧,𝑇   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑛)   𝐴(𝑥,𝑧,𝑛)   𝐵(𝑥,𝑧,𝑛)   𝑆(𝑥,𝑛)   𝑇(𝑥,𝑛)   𝑈(𝑥,𝑧,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑧,𝑛)   𝐽(𝑥,𝑛)   𝑁(𝑥,𝑛)

Proof of Theorem ctiunctlemu2nd
StepHypRef Expression
1 ctiunctlem.n . . . 4 (𝜑𝑁𝑈)
2 2fveq3 5628 . . . . . . 7 (𝑧 = 𝑁 → (1st ‘(𝐽𝑧)) = (1st ‘(𝐽𝑁)))
32eleq1d 2298 . . . . . 6 (𝑧 = 𝑁 → ((1st ‘(𝐽𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽𝑁)) ∈ 𝑆))
4 2fveq3 5628 . . . . . . 7 (𝑧 = 𝑁 → (2nd ‘(𝐽𝑧)) = (2nd ‘(𝐽𝑁)))
52fveq2d 5627 . . . . . . . 8 (𝑧 = 𝑁 → (𝐹‘(1st ‘(𝐽𝑧))) = (𝐹‘(1st ‘(𝐽𝑁))))
65csbeq1d 3131 . . . . . . 7 (𝑧 = 𝑁(𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 = (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)
74, 6eleq12d 2300 . . . . . 6 (𝑧 = 𝑁 → ((2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 ↔ (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇))
83, 7anbi12d 473 . . . . 5 (𝑧 = 𝑁 → (((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇) ↔ ((1st ‘(𝐽𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)))
9 ctiunct.u . . . . 5 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
108, 9elrab2 2962 . . . 4 (𝑁𝑈 ↔ (𝑁 ∈ ω ∧ ((1st ‘(𝐽𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)))
111, 10sylib 122 . . 3 (𝜑 → (𝑁 ∈ ω ∧ ((1st ‘(𝐽𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)))
1211simprd 114 . 2 (𝜑 → ((1st ‘(𝐽𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇))
1312simprd 114 1 (𝜑 → (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  {crab 2512  csb 3124  wss 3197  ωcom 4679   × cxp 4714  ontowfo 5312  1-1-ontowf1o 5313  cfv 5314  1st c1st 6274  2nd c2nd 6275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5274  df-fv 5322
This theorem is referenced by:  ctiunctlemf  12995
  Copyright terms: Public domain W3C validator