| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemu2nd | GIF version | ||
| Description: Lemma for ctiunct 12861. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| Ref | Expression |
|---|---|
| ctiunct.som | ⊢ (𝜑 → 𝑆 ⊆ ω) |
| ctiunct.sdc | ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
| ctiunct.f | ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
| ctiunct.tom | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) |
| ctiunct.tdc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
| ctiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) |
| ctiunct.j | ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) |
| ctiunct.u | ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} |
| ctiunctlem.n | ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ctiunctlemu2nd | ⊢ (𝜑 → (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctiunctlem.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑈) | |
| 2 | 2fveq3 5591 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → (1st ‘(𝐽‘𝑧)) = (1st ‘(𝐽‘𝑁))) | |
| 3 | 2 | eleq1d 2275 | . . . . . 6 ⊢ (𝑧 = 𝑁 → ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽‘𝑁)) ∈ 𝑆)) |
| 4 | 2fveq3 5591 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → (2nd ‘(𝐽‘𝑧)) = (2nd ‘(𝐽‘𝑁))) | |
| 5 | 2 | fveq2d 5590 | . . . . . . . 8 ⊢ (𝑧 = 𝑁 → (𝐹‘(1st ‘(𝐽‘𝑧))) = (𝐹‘(1st ‘(𝐽‘𝑁)))) |
| 6 | 5 | csbeq1d 3102 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 = ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) |
| 7 | 4, 6 | eleq12d 2277 | . . . . . 6 ⊢ (𝑧 = 𝑁 → ((2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 ↔ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇)) |
| 8 | 3, 7 | anbi12d 473 | . . . . 5 ⊢ (𝑧 = 𝑁 → (((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇) ↔ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
| 9 | ctiunct.u | . . . . 5 ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} | |
| 10 | 8, 9 | elrab2 2934 | . . . 4 ⊢ (𝑁 ∈ 𝑈 ↔ (𝑁 ∈ ω ∧ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
| 11 | 1, 10 | sylib 122 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ω ∧ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
| 12 | 11 | simprd 114 | . 2 ⊢ (𝜑 → ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇)) |
| 13 | 12 | simprd 114 | 1 ⊢ (𝜑 → (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ⦋csb 3095 ⊆ wss 3168 ωcom 4643 × cxp 4678 –onto→wfo 5275 –1-1-onto→wf1o 5276 ‘cfv 5277 1st c1st 6234 2nd c2nd 6235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-iota 5238 df-fv 5285 |
| This theorem is referenced by: ctiunctlemf 12859 |
| Copyright terms: Public domain | W3C validator |