![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ctiunctlemu2nd | GIF version |
Description: Lemma for ctiunct 12494. (Contributed by Jim Kingdon, 28-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.som | ⊢ (𝜑 → 𝑆 ⊆ ω) |
ctiunct.sdc | ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
ctiunct.f | ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
ctiunct.tom | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) |
ctiunct.tdc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
ctiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) |
ctiunct.j | ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) |
ctiunct.u | ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} |
ctiunctlem.n | ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
Ref | Expression |
---|---|
ctiunctlemu2nd | ⊢ (𝜑 → (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunctlem.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑈) | |
2 | 2fveq3 5539 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → (1st ‘(𝐽‘𝑧)) = (1st ‘(𝐽‘𝑁))) | |
3 | 2 | eleq1d 2258 | . . . . . 6 ⊢ (𝑧 = 𝑁 → ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽‘𝑁)) ∈ 𝑆)) |
4 | 2fveq3 5539 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → (2nd ‘(𝐽‘𝑧)) = (2nd ‘(𝐽‘𝑁))) | |
5 | 2 | fveq2d 5538 | . . . . . . . 8 ⊢ (𝑧 = 𝑁 → (𝐹‘(1st ‘(𝐽‘𝑧))) = (𝐹‘(1st ‘(𝐽‘𝑁)))) |
6 | 5 | csbeq1d 3079 | . . . . . . 7 ⊢ (𝑧 = 𝑁 → ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 = ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) |
7 | 4, 6 | eleq12d 2260 | . . . . . 6 ⊢ (𝑧 = 𝑁 → ((2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 ↔ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇)) |
8 | 3, 7 | anbi12d 473 | . . . . 5 ⊢ (𝑧 = 𝑁 → (((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇) ↔ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
9 | ctiunct.u | . . . . 5 ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} | |
10 | 8, 9 | elrab2 2911 | . . . 4 ⊢ (𝑁 ∈ 𝑈 ↔ (𝑁 ∈ ω ∧ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
11 | 1, 10 | sylib 122 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ω ∧ ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇))) |
12 | 11 | simprd 114 | . 2 ⊢ (𝜑 → ((1st ‘(𝐽‘𝑁)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇)) |
13 | 12 | simprd 114 | 1 ⊢ (𝜑 → (2nd ‘(𝐽‘𝑁)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑁))) / 𝑥⦌𝑇) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ∀wral 2468 {crab 2472 ⦋csb 3072 ⊆ wss 3144 ωcom 4607 × cxp 4642 –onto→wfo 5233 –1-1-onto→wf1o 5234 ‘cfv 5235 1st c1st 6164 2nd c2nd 6165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 |
This theorem is referenced by: ctiunctlemf 12492 |
Copyright terms: Public domain | W3C validator |