Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss5 | GIF version |
Description: Another definition of subclasshood. Similar to df-ss 3134, dfss 3135, and dfss1 3331. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
dfss5 | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss1 3331 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
2 | eqcom 2172 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐴 ↔ 𝐴 = (𝐵 ∩ 𝐴)) | |
3 | 1, 2 | bitri 183 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∩ cin 3120 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 |
This theorem is referenced by: nninfdcex 11908 nnmindc 11989 nnminle 11990 |
Copyright terms: Public domain | W3C validator |