ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss5 GIF version

Theorem dfss5 3332
Description: Another definition of subclasshood. Similar to df-ss 3134, dfss 3135, and dfss1 3331. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
dfss5 (𝐴𝐵𝐴 = (𝐵𝐴))

Proof of Theorem dfss5
StepHypRef Expression
1 dfss1 3331 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eqcom 2172 . 2 ((𝐵𝐴) = 𝐴𝐴 = (𝐵𝐴))
31, 2bitri 183 1 (𝐴𝐵𝐴 = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  cin 3120  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by:  nninfdcex  11908  nnmindc  11989  nnminle  11990
  Copyright terms: Public domain W3C validator