ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss5 GIF version

Theorem dfss5 3355
Description: Another definition of subclasshood. Similar to df-ss 3157, dfss 3158, and dfss1 3354. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
dfss5 (𝐴𝐵𝐴 = (𝐵𝐴))

Proof of Theorem dfss5
StepHypRef Expression
1 dfss1 3354 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2 eqcom 2191 . 2 ((𝐵𝐴) = 𝐴𝐴 = (𝐵𝐴))
31, 2bitri 184 1 (𝐴𝐵𝐴 = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  cin 3143  wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157
This theorem is referenced by:  nninfdcex  11985  nnmindc  12066  nnminle  12067
  Copyright terms: Public domain W3C validator