Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss5 | GIF version |
Description: Another definition of subclasshood. Similar to df-ss 3140, dfss 3141, and dfss1 3337. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
dfss5 | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss1 3337 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
2 | eqcom 2177 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐴 ↔ 𝐴 = (𝐵 ∩ 𝐴)) | |
3 | 1, 2 | bitri 184 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∩ cin 3126 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 |
This theorem is referenced by: nninfdcex 11921 nnmindc 12002 nnminle 12003 |
Copyright terms: Public domain | W3C validator |