| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss5 | GIF version | ||
| Description: Another definition of subclasshood. Similar to df-ss 3170, dfss 3171, and dfss1 3367. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| dfss5 | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss1 3367 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
| 2 | eqcom 2198 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐴 ↔ 𝐴 = (𝐵 ∩ 𝐴)) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∩ cin 3156 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: nninfdcex 12096 nnmindc 12177 nnminle 12178 |
| Copyright terms: Public domain | W3C validator |