ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem1 GIF version

Theorem sbthlem1 7120
Description: Lemma for isbth 7130. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem1
StepHypRef Expression
1 unissb 3917 . 2 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ∀𝑥𝐷 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
32abeq2i 2340 . . . 4 (𝑥𝐷 ↔ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
4 difss2 3332 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴)
5 ssconb 3337 . . . . . . . 8 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴) → (𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ↔ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
65exbiri 382 . . . . . . 7 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
74, 6syl5 32 . . . . . 6 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
87pm2.43d 50 . . . . 5 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))))
98imp 124 . . . 4 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
103, 9sylbi 121 . . 3 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
11 elssuni 3915 . . . . 5 (𝑥𝐷𝑥 𝐷)
12 imass2 5103 . . . . 5 (𝑥 𝐷 → (𝑓𝑥) ⊆ (𝑓 𝐷))
13 sscon 3338 . . . . 5 ((𝑓𝑥) ⊆ (𝑓 𝐷) → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
1411, 12, 133syl 17 . . . 4 (𝑥𝐷 → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
15 imass2 5103 . . . 4 ((𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))
16 sscon 3338 . . . 4 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1714, 15, 163syl 17 . . 3 (𝑥𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1810, 17sstrd 3234 . 2 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
191, 18mprgbir 2588 1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  cdif 3194  wss 3197   cuni 3887  cima 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731
This theorem is referenced by:  sbthlem2  7121  sbthlemi3  7122  sbthlemi5  7124
  Copyright terms: Public domain W3C validator