Proof of Theorem sbthlem1
| Step | Hyp | Ref
 | Expression | 
| 1 |   | unissb 3869 | 
. 2
⊢ (∪ 𝐷
⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ↔ ∀𝑥 ∈ 𝐷 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) | 
| 2 |   | sbthlem.2 | 
. . . . 5
⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | 
| 3 | 2 | abeq2i 2307 | 
. . . 4
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))) | 
| 4 |   | difss2 3291 | 
. . . . . . 7
⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ 𝐴) | 
| 5 |   | ssconb 3296 | 
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ 𝐴) → (𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) ↔ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))) | 
| 6 | 5 | exbiri 382 | 
. . . . . . 7
⊢ (𝑥 ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))))) | 
| 7 | 4, 6 | syl5 32 | 
. . . . . 6
⊢ (𝑥 ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))))) | 
| 8 | 7 | pm2.43d 50 | 
. . . . 5
⊢ (𝑥 ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))))) | 
| 9 | 8 | imp 124 | 
. . . 4
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥)) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))) | 
| 10 | 3, 9 | sylbi 121 | 
. . 3
⊢ (𝑥 ∈ 𝐷 → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))) | 
| 11 |   | elssuni 3867 | 
. . . . 5
⊢ (𝑥 ∈ 𝐷 → 𝑥 ⊆ ∪ 𝐷) | 
| 12 |   | imass2 5045 | 
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐷
→ (𝑓 “ 𝑥) ⊆ (𝑓 “ ∪ 𝐷)) | 
| 13 |   | sscon 3297 | 
. . . . 5
⊢ ((𝑓 “ 𝑥) ⊆ (𝑓 “ ∪ 𝐷) → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) ⊆ (𝐵 ∖ (𝑓 “ 𝑥))) | 
| 14 | 11, 12, 13 | 3syl 17 | 
. . . 4
⊢ (𝑥 ∈ 𝐷 → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) ⊆ (𝐵 ∖ (𝑓 “ 𝑥))) | 
| 15 |   | imass2 5045 | 
. . . 4
⊢ ((𝐵 ∖ (𝑓 “ ∪ 𝐷)) ⊆ (𝐵 ∖ (𝑓 “ 𝑥)) → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) | 
| 16 |   | sscon 3297 | 
. . . 4
⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) | 
| 17 | 14, 15, 16 | 3syl 17 | 
. . 3
⊢ (𝑥 ∈ 𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) | 
| 18 | 10, 17 | sstrd 3193 | 
. 2
⊢ (𝑥 ∈ 𝐷 → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) | 
| 19 | 1, 18 | mprgbir 2555 | 
1
⊢ ∪ 𝐷
⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |