ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem1 GIF version

Theorem sbthlem1 6903
Description: Lemma for isbth 6913. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem1
StepHypRef Expression
1 unissb 3804 . 2 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ∀𝑥𝐷 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
32abeq2i 2268 . . . 4 (𝑥𝐷 ↔ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
4 difss2 3236 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴)
5 ssconb 3241 . . . . . . . 8 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴) → (𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ↔ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
65exbiri 380 . . . . . . 7 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
74, 6syl5 32 . . . . . 6 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
87pm2.43d 50 . . . . 5 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))))
98imp 123 . . . 4 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
103, 9sylbi 120 . . 3 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
11 elssuni 3802 . . . . 5 (𝑥𝐷𝑥 𝐷)
12 imass2 4964 . . . . 5 (𝑥 𝐷 → (𝑓𝑥) ⊆ (𝑓 𝐷))
13 sscon 3242 . . . . 5 ((𝑓𝑥) ⊆ (𝑓 𝐷) → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
1411, 12, 133syl 17 . . . 4 (𝑥𝐷 → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
15 imass2 4964 . . . 4 ((𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))
16 sscon 3242 . . . 4 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1714, 15, 163syl 17 . . 3 (𝑥𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1810, 17sstrd 3138 . 2 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
191, 18mprgbir 2515 1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  {cab 2143  Vcvv 2712  cdif 3099  wss 3102   cuni 3774  cima 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601
This theorem is referenced by:  sbthlem2  6904  sbthlemi3  6905  sbthlemi5  6907
  Copyright terms: Public domain W3C validator