Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sstrd 3157 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: difss2 3255 sstpr 3744 rintm 3965 eqbrrdva 4781 dmxpss2 5043 rnxpss2 5044 ssxpbm 5046 ssxp1 5047 ssxp2 5048 relfld 5139 funssxp 5367 dff2 5640 fliftf 5778 1stcof 6142 2ndcof 6143 tfrlemibfn 6307 tfr1onlembfn 6323 tfrcllemssrecs 6331 tfrcllembfn 6336 sucinc2 6425 peano5nnnn 7854 peano5nni 8881 suprzclex 9310 ioodisj 9950 fzssnn 10024 fzossnn0 10131 elfzom1elp1fzo 10158 frecuzrdgtcl 10368 frecuzrdgdomlem 10373 frecuzrdgfunlem 10375 zfz1iso 10776 seq3coll 10777 summodclem2a 11344 summodclem2 11345 zsumdc 11347 fsumsersdc 11358 fsum3cvg3 11359 prodmodclem2a 11539 prodmodclem2 11540 zproddc 11542 exmidunben 12381 nninfdclemp1 12405 strsetsid 12449 lmss 13040 dvbssntrcntop 13447 dvcjbr 13466 reeff1olem 13486 peano5set 13975 |
Copyright terms: Public domain | W3C validator |