| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sstrd 3207 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: difss2 3305 sstpr 3804 rintm 4026 eqbrrdva 4856 dmxpss2 5124 rnxpss2 5125 ssxpbm 5127 ssxp1 5128 ssxp2 5129 relfld 5220 funssxp 5455 dff2 5737 fliftf 5881 1stcof 6262 2ndcof 6263 tfrlemibfn 6427 tfr1onlembfn 6443 tfrcllemssrecs 6451 tfrcllembfn 6456 sucinc2 6545 peano5nnnn 8025 peano5nni 9059 suprzclex 9491 ioodisj 10135 fzssnn 10210 fzossnn0 10319 elfzom1elp1fzo 10353 frecuzrdgtcl 10579 frecuzrdgdomlem 10584 frecuzrdgfunlem 10586 zfz1iso 11008 seq3coll 11009 summodclem2a 11767 summodclem2 11768 zsumdc 11770 fsumsersdc 11781 fsum3cvg3 11782 prodmodclem2a 11962 prodmodclem2 11963 zproddc 11965 4sqlem11 12799 exmidunben 12872 nninfdclemp1 12896 strsetsid 12940 reldvdsrsrg 13929 lmss 14793 dvbssntrcntop 15231 dvcjbr 15255 reeff1olem 15318 peano5set 16014 |
| Copyright terms: Public domain | W3C validator |