![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sstrd 3177 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 |
This theorem is referenced by: difss2 3275 sstpr 3769 rintm 3991 eqbrrdva 4809 dmxpss2 5073 rnxpss2 5074 ssxpbm 5076 ssxp1 5077 ssxp2 5078 relfld 5169 funssxp 5397 dff2 5673 fliftf 5813 1stcof 6178 2ndcof 6179 tfrlemibfn 6343 tfr1onlembfn 6359 tfrcllemssrecs 6367 tfrcllembfn 6372 sucinc2 6461 peano5nnnn 7905 peano5nni 8936 suprzclex 9365 ioodisj 10007 fzssnn 10082 fzossnn0 10189 elfzom1elp1fzo 10216 frecuzrdgtcl 10426 frecuzrdgdomlem 10431 frecuzrdgfunlem 10433 zfz1iso 10835 seq3coll 10836 summodclem2a 11403 summodclem2 11404 zsumdc 11406 fsumsersdc 11417 fsum3cvg3 11418 prodmodclem2a 11598 prodmodclem2 11599 zproddc 11601 exmidunben 12441 nninfdclemp1 12465 strsetsid 12509 reldvdsrsrg 13340 lmss 14042 dvbssntrcntop 14449 dvcjbr 14468 reeff1olem 14488 peano5set 14988 |
Copyright terms: Public domain | W3C validator |