| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sstrd 3202 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: difss2 3300 sstpr 3797 rintm 4019 eqbrrdva 4846 dmxpss2 5112 rnxpss2 5113 ssxpbm 5115 ssxp1 5116 ssxp2 5117 relfld 5208 funssxp 5439 dff2 5718 fliftf 5858 1stcof 6239 2ndcof 6240 tfrlemibfn 6404 tfr1onlembfn 6420 tfrcllemssrecs 6428 tfrcllembfn 6433 sucinc2 6522 peano5nnnn 7987 peano5nni 9021 suprzclex 9453 ioodisj 10097 fzssnn 10172 fzossnn0 10280 elfzom1elp1fzo 10312 frecuzrdgtcl 10538 frecuzrdgdomlem 10543 frecuzrdgfunlem 10545 zfz1iso 10967 seq3coll 10968 summodclem2a 11611 summodclem2 11612 zsumdc 11614 fsumsersdc 11625 fsum3cvg3 11626 prodmodclem2a 11806 prodmodclem2 11807 zproddc 11809 4sqlem11 12643 exmidunben 12716 nninfdclemp1 12740 strsetsid 12784 reldvdsrsrg 13772 lmss 14636 dvbssntrcntop 15074 dvcjbr 15098 reeff1olem 15161 peano5set 15740 |
| Copyright terms: Public domain | W3C validator |