![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sstrd 3190 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: difss2 3288 sstpr 3784 rintm 4006 eqbrrdva 4833 dmxpss2 5099 rnxpss2 5100 ssxpbm 5102 ssxp1 5103 ssxp2 5104 relfld 5195 funssxp 5424 dff2 5703 fliftf 5843 1stcof 6218 2ndcof 6219 tfrlemibfn 6383 tfr1onlembfn 6399 tfrcllemssrecs 6407 tfrcllembfn 6412 sucinc2 6501 peano5nnnn 7954 peano5nni 8987 suprzclex 9418 ioodisj 10062 fzssnn 10137 fzossnn0 10245 elfzom1elp1fzo 10272 frecuzrdgtcl 10486 frecuzrdgdomlem 10491 frecuzrdgfunlem 10493 zfz1iso 10915 seq3coll 10916 summodclem2a 11527 summodclem2 11528 zsumdc 11530 fsumsersdc 11541 fsum3cvg3 11542 prodmodclem2a 11722 prodmodclem2 11723 zproddc 11725 4sqlem11 12542 exmidunben 12586 nninfdclemp1 12610 strsetsid 12654 reldvdsrsrg 13591 lmss 14425 dvbssntrcntop 14863 dvcjbr 14887 reeff1olem 14947 peano5set 15502 |
Copyright terms: Public domain | W3C validator |