| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sstrd 3194 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difss2 3292 sstpr 3788 rintm 4010 eqbrrdva 4837 dmxpss2 5103 rnxpss2 5104 ssxpbm 5106 ssxp1 5107 ssxp2 5108 relfld 5199 funssxp 5430 dff2 5709 fliftf 5849 1stcof 6230 2ndcof 6231 tfrlemibfn 6395 tfr1onlembfn 6411 tfrcllemssrecs 6419 tfrcllembfn 6424 sucinc2 6513 peano5nnnn 7978 peano5nni 9012 suprzclex 9443 ioodisj 10087 fzssnn 10162 fzossnn0 10270 elfzom1elp1fzo 10297 frecuzrdgtcl 10523 frecuzrdgdomlem 10528 frecuzrdgfunlem 10530 zfz1iso 10952 seq3coll 10953 summodclem2a 11565 summodclem2 11566 zsumdc 11568 fsumsersdc 11579 fsum3cvg3 11580 prodmodclem2a 11760 prodmodclem2 11761 zproddc 11763 4sqlem11 12597 exmidunben 12670 nninfdclemp1 12694 strsetsid 12738 reldvdsrsrg 13726 lmss 14590 dvbssntrcntop 15028 dvcjbr 15052 reeff1olem 15115 peano5set 15694 |
| Copyright terms: Public domain | W3C validator |