ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrdi GIF version

Theorem sstrdi 3209
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sstrdi.1 (𝜑𝐴𝐵)
sstrdi.2 𝐵𝐶
Assertion
Ref Expression
sstrdi (𝜑𝐴𝐶)

Proof of Theorem sstrdi
StepHypRef Expression
1 sstrdi.1 . 2 (𝜑𝐴𝐵)
2 sstrdi.2 . . 3 𝐵𝐶
32a1i 9 . 2 (𝜑𝐵𝐶)
41, 3sstrd 3207 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  difss2  3305  sstpr  3804  rintm  4026  eqbrrdva  4856  dmxpss2  5124  rnxpss2  5125  ssxpbm  5127  ssxp1  5128  ssxp2  5129  relfld  5220  funssxp  5455  dff2  5737  fliftf  5881  1stcof  6262  2ndcof  6263  tfrlemibfn  6427  tfr1onlembfn  6443  tfrcllemssrecs  6451  tfrcllembfn  6456  sucinc2  6545  peano5nnnn  8025  peano5nni  9059  suprzclex  9491  ioodisj  10135  fzssnn  10210  fzossnn0  10319  elfzom1elp1fzo  10353  frecuzrdgtcl  10579  frecuzrdgdomlem  10584  frecuzrdgfunlem  10586  zfz1iso  11008  seq3coll  11009  summodclem2a  11767  summodclem2  11768  zsumdc  11770  fsumsersdc  11781  fsum3cvg3  11782  prodmodclem2a  11962  prodmodclem2  11963  zproddc  11965  4sqlem11  12799  exmidunben  12872  nninfdclemp1  12896  strsetsid  12940  reldvdsrsrg  13929  lmss  14793  dvbssntrcntop  15231  dvcjbr  15255  reeff1olem  15318  peano5set  16014
  Copyright terms: Public domain W3C validator