Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sstrd 3151 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: difss2 3249 sstpr 3736 rintm 3957 eqbrrdva 4773 dmxpss2 5035 rnxpss2 5036 ssxpbm 5038 ssxp1 5039 ssxp2 5040 relfld 5131 funssxp 5356 dff2 5628 fliftf 5766 1stcof 6128 2ndcof 6129 tfrlemibfn 6292 tfr1onlembfn 6308 tfrcllemssrecs 6316 tfrcllembfn 6321 sucinc2 6410 peano5nnnn 7829 peano5nni 8856 suprzclex 9285 ioodisj 9925 fzssnn 9999 fzossnn0 10106 elfzom1elp1fzo 10133 frecuzrdgtcl 10343 frecuzrdgdomlem 10348 frecuzrdgfunlem 10350 zfz1iso 10750 seq3coll 10751 summodclem2a 11318 summodclem2 11319 zsumdc 11321 fsumsersdc 11332 fsum3cvg3 11333 prodmodclem2a 11513 prodmodclem2 11514 zproddc 11516 exmidunben 12355 nninfdclemp1 12379 strsetsid 12423 lmss 12846 dvbssntrcntop 13253 dvcjbr 13272 reeff1olem 13292 peano5set 13782 |
Copyright terms: Public domain | W3C validator |