![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
4 | 1, 3 | sstrd 3189 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: difss2 3287 sstpr 3783 rintm 4005 eqbrrdva 4832 dmxpss2 5098 rnxpss2 5099 ssxpbm 5101 ssxp1 5102 ssxp2 5103 relfld 5194 funssxp 5423 dff2 5702 fliftf 5842 1stcof 6216 2ndcof 6217 tfrlemibfn 6381 tfr1onlembfn 6397 tfrcllemssrecs 6405 tfrcllembfn 6410 sucinc2 6499 peano5nnnn 7952 peano5nni 8985 suprzclex 9415 ioodisj 10059 fzssnn 10134 fzossnn0 10242 elfzom1elp1fzo 10269 frecuzrdgtcl 10483 frecuzrdgdomlem 10488 frecuzrdgfunlem 10490 zfz1iso 10912 seq3coll 10913 summodclem2a 11524 summodclem2 11525 zsumdc 11527 fsumsersdc 11538 fsum3cvg3 11539 prodmodclem2a 11719 prodmodclem2 11720 zproddc 11722 4sqlem11 12539 exmidunben 12583 nninfdclemp1 12607 strsetsid 12651 reldvdsrsrg 13588 lmss 14414 dvbssntrcntop 14838 dvcjbr 14857 reeff1olem 14906 peano5set 15432 |
Copyright terms: Public domain | W3C validator |