| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sstrdi.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| sstrdi | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sstrdi.2 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | sstrd 3234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difss2 3332 sstpr 3834 rintm 4057 eqbrrdva 4891 dmxpss2 5160 rnxpss2 5161 ssxpbm 5163 ssxp1 5164 ssxp2 5165 relfld 5256 funssxp 5492 dff2 5778 fliftf 5922 1stcof 6307 2ndcof 6308 tfrlemibfn 6472 tfr1onlembfn 6488 tfrcllemssrecs 6496 tfrcllembfn 6501 sucinc2 6590 peano5nnnn 8075 peano5nni 9109 suprzclex 9541 ioodisj 10185 fzssnn 10260 fzossnn0 10369 elfzom1elp1fzo 10403 frecuzrdgtcl 10629 frecuzrdgdomlem 10634 frecuzrdgfunlem 10636 zfz1iso 11058 seq3coll 11059 summodclem2a 11887 summodclem2 11888 zsumdc 11890 fsumsersdc 11901 fsum3cvg3 11902 prodmodclem2a 12082 prodmodclem2 12083 zproddc 12085 4sqlem11 12919 exmidunben 12992 nninfdclemp1 13016 strsetsid 13060 reldvdsrsrg 14050 lmss 14914 dvbssntrcntop 15352 dvcjbr 15376 reeff1olem 15439 peano5set 16261 |
| Copyright terms: Public domain | W3C validator |