| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ss | GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3466 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 647 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3199 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ⊆ wss 3168 ∅c0 3462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3170 df-in 3174 df-ss 3181 df-nul 3463 |
| This theorem is referenced by: ss0b 3502 ssdifeq0 3545 sssnr 3797 ssprr 3800 uni0 3880 int0el 3918 0disj 4045 disjx0 4047 tr0 4158 0elpw 4213 exmidsssn 4251 fr0 4403 elomssom 4658 rel0 4805 0ima 5048 fun0 5338 f0 5475 el2oss1o 6539 oaword1 6567 0domg 6946 nnnninf 7240 exmidfodomrlemim 7322 pw1on 7351 fzowrddc 11114 swrd00g 11116 swrdlend 11125 sum0 11749 prod0 11946 0bits 12320 ennnfonelemj0 12822 ennnfonelemkh 12833 lsp0 14235 lss0v 14242 0opn 14528 baspartn 14572 0cld 14634 ntr0 14656 bdeq0 15917 bj-omtrans 16006 nninfsellemsuc 16064 nnnninfex 16074 |
| Copyright terms: Public domain | W3C validator |