Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0ss | GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 641 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3151 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ⊆ wss 3121 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: ss0b 3454 ssdifeq0 3497 sssnr 3740 ssprr 3743 uni0 3823 int0el 3861 0disj 3986 disjx0 3988 tr0 4098 0elpw 4150 exmidsssn 4188 fr0 4336 elomssom 4589 rel0 4736 0ima 4971 fun0 5256 f0 5388 el2oss1o 6422 oaword1 6450 0domg 6815 nnnninf 7102 exmidfodomrlemim 7178 pw1on 7203 sum0 11351 prod0 11548 ennnfonelemj0 12356 ennnfonelemkh 12367 0opn 12798 baspartn 12842 0cld 12906 ntr0 12928 bdeq0 13902 bj-omtrans 13991 nninfsellemsuc 14045 |
Copyright terms: Public domain | W3C validator |