| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ss | GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 649 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3228 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: ss0b 3531 ssdifeq0 3574 sssnr 3831 ssprr 3834 uni0 3915 int0el 3953 0disj 4080 disjx0 4082 tr0 4193 0elpw 4248 exmidsssn 4286 fr0 4442 elomssom 4697 rel0 4844 0ima 5088 fun0 5379 f0 5518 el2oss1o 6597 oaword1 6625 0domg 7006 nnnninf 7301 exmidfodomrlemim 7387 pw1on 7419 fzowrddc 11187 swrd00g 11189 swrdlend 11198 sum0 11907 prod0 12104 0bits 12478 ennnfonelemj0 12980 ennnfonelemkh 12991 lsp0 14395 lss0v 14402 0opn 14688 baspartn 14732 0cld 14794 ntr0 14816 bdeq0 16254 bj-omtrans 16343 nninfsellemsuc 16408 nnnninfex 16418 |
| Copyright terms: Public domain | W3C validator |