ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss GIF version

Theorem 0ss 3462
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss ∅ ⊆ 𝐴

Proof of Theorem 0ss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3427 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 646 . 2 (𝑥 ∈ ∅ → 𝑥𝐴)
32ssriv 3160 1 ∅ ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2148  wss 3130  c0 3423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-ss 3143  df-nul 3424
This theorem is referenced by:  ss0b  3463  ssdifeq0  3506  sssnr  3754  ssprr  3757  uni0  3837  int0el  3875  0disj  4001  disjx0  4003  tr0  4113  0elpw  4165  exmidsssn  4203  fr0  4352  elomssom  4605  rel0  4752  0ima  4989  fun0  5275  f0  5407  el2oss1o  6444  oaword1  6472  0domg  6837  nnnninf  7124  exmidfodomrlemim  7200  pw1on  7225  sum0  11396  prod0  11593  ennnfonelemj0  12402  ennnfonelemkh  12413  0opn  13509  baspartn  13553  0cld  13615  ntr0  13637  bdeq0  14622  bj-omtrans  14711  nninfsellemsuc  14764
  Copyright terms: Public domain W3C validator