![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ss | GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3451 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 647 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3184 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ⊆ wss 3154 ∅c0 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 |
This theorem is referenced by: ss0b 3487 ssdifeq0 3530 sssnr 3780 ssprr 3783 uni0 3863 int0el 3901 0disj 4027 disjx0 4029 tr0 4139 0elpw 4194 exmidsssn 4232 fr0 4383 elomssom 4638 rel0 4785 0ima 5026 fun0 5313 f0 5445 el2oss1o 6498 oaword1 6526 0domg 6895 nnnninf 7187 exmidfodomrlemim 7263 pw1on 7288 sum0 11534 prod0 11731 ennnfonelemj0 12561 ennnfonelemkh 12572 lsp0 13922 lss0v 13929 0opn 14185 baspartn 14229 0cld 14291 ntr0 14313 bdeq0 15429 bj-omtrans 15518 nninfsellemsuc 15572 |
Copyright terms: Public domain | W3C validator |