ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss GIF version

Theorem 0ss 3485
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss ∅ ⊆ 𝐴

Proof of Theorem 0ss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3450 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 647 . 2 (𝑥 ∈ ∅ → 𝑥𝐴)
32ssriv 3183 1 ∅ ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2164  wss 3153  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by:  ss0b  3486  ssdifeq0  3529  sssnr  3779  ssprr  3782  uni0  3862  int0el  3900  0disj  4026  disjx0  4028  tr0  4138  0elpw  4193  exmidsssn  4231  fr0  4382  elomssom  4637  rel0  4784  0ima  5025  fun0  5312  f0  5444  el2oss1o  6496  oaword1  6524  0domg  6893  nnnninf  7185  exmidfodomrlemim  7261  pw1on  7286  sum0  11531  prod0  11728  ennnfonelemj0  12558  ennnfonelemkh  12569  lsp0  13919  lss0v  13926  0opn  14174  baspartn  14218  0cld  14280  ntr0  14302  bdeq0  15359  bj-omtrans  15448  nninfsellemsuc  15502
  Copyright terms: Public domain W3C validator