ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss GIF version

Theorem 0ss 3501
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss ∅ ⊆ 𝐴

Proof of Theorem 0ss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3466 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 647 . 2 (𝑥 ∈ ∅ → 𝑥𝐴)
32ssriv 3199 1 ∅ ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2177  wss 3168  c0 3462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3170  df-in 3174  df-ss 3181  df-nul 3463
This theorem is referenced by:  ss0b  3502  ssdifeq0  3545  sssnr  3797  ssprr  3800  uni0  3880  int0el  3918  0disj  4045  disjx0  4047  tr0  4158  0elpw  4213  exmidsssn  4251  fr0  4403  elomssom  4658  rel0  4805  0ima  5048  fun0  5338  f0  5475  el2oss1o  6539  oaword1  6567  0domg  6946  nnnninf  7240  exmidfodomrlemim  7322  pw1on  7351  fzowrddc  11114  swrd00g  11116  swrdlend  11125  sum0  11749  prod0  11946  0bits  12320  ennnfonelemj0  12822  ennnfonelemkh  12833  lsp0  14235  lss0v  14242  0opn  14528  baspartn  14572  0cld  14634  ntr0  14656  bdeq0  15917  bj-omtrans  16006  nninfsellemsuc  16064  nnnninfex  16074
  Copyright terms: Public domain W3C validator