Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0ss | GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 636 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3146 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ⊆ wss 3116 ∅c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 |
This theorem is referenced by: ss0b 3448 ssdifeq0 3491 sssnr 3733 ssprr 3736 uni0 3816 int0el 3854 0disj 3979 disjx0 3981 tr0 4091 0elpw 4143 exmidsssn 4181 fr0 4329 elomssom 4582 rel0 4729 0ima 4964 fun0 5246 f0 5378 el2oss1o 6411 oaword1 6439 0domg 6803 nnnninf 7090 exmidfodomrlemim 7157 pw1on 7182 sum0 11329 prod0 11526 ennnfonelemj0 12334 ennnfonelemkh 12345 0opn 12644 baspartn 12688 0cld 12752 ntr0 12774 bdeq0 13749 bj-omtrans 13838 nninfsellemsuc 13892 |
Copyright terms: Public domain | W3C validator |