![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ss | GIF version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss | ⊢ ∅ ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3441 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | pm2.21i 647 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
3 | 2 | ssriv 3174 | 1 ⊢ ∅ ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 ⊆ wss 3144 ∅c0 3437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-dif 3146 df-in 3150 df-ss 3157 df-nul 3438 |
This theorem is referenced by: ss0b 3477 ssdifeq0 3520 sssnr 3768 ssprr 3771 uni0 3851 int0el 3889 0disj 4015 disjx0 4017 tr0 4127 0elpw 4179 exmidsssn 4217 fr0 4366 elomssom 4619 rel0 4766 0ima 5003 fun0 5290 f0 5422 el2oss1o 6463 oaword1 6491 0domg 6860 nnnninf 7149 exmidfodomrlemim 7225 pw1on 7250 sum0 11423 prod0 11620 ennnfonelemj0 12447 ennnfonelemkh 12458 lsp0 13732 lss0v 13739 0opn 13943 baspartn 13987 0cld 14049 ntr0 14071 bdeq0 15056 bj-omtrans 15145 nninfsellemsuc 15199 |
Copyright terms: Public domain | W3C validator |