ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss GIF version

Theorem 0ss 3476
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss ∅ ⊆ 𝐴

Proof of Theorem 0ss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3441 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 647 . 2 (𝑥 ∈ ∅ → 𝑥𝐴)
32ssriv 3174 1 ∅ ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2160  wss 3144  c0 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-nul 3438
This theorem is referenced by:  ss0b  3477  ssdifeq0  3520  sssnr  3768  ssprr  3771  uni0  3851  int0el  3889  0disj  4015  disjx0  4017  tr0  4127  0elpw  4179  exmidsssn  4217  fr0  4366  elomssom  4619  rel0  4766  0ima  5003  fun0  5290  f0  5422  el2oss1o  6463  oaword1  6491  0domg  6860  nnnninf  7149  exmidfodomrlemim  7225  pw1on  7250  sum0  11423  prod0  11620  ennnfonelemj0  12447  ennnfonelemkh  12458  lsp0  13732  lss0v  13739  0opn  13943  baspartn  13987  0cld  14049  ntr0  14071  bdeq0  15056  bj-omtrans  15145  nninfsellemsuc  15199
  Copyright terms: Public domain W3C validator