| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ss | GIF version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 0ss | ⊢ ∅ ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 | . . 3 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | pm2.21i 649 | . 2 ⊢ (𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) |
| 3 | 2 | ssriv 3228 | 1 ⊢ ∅ ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ⊆ wss 3197 ∅c0 3491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 |
| This theorem is referenced by: ss0b 3531 ssdifeq0 3574 sssnr 3830 ssprr 3833 uni0 3914 int0el 3952 0disj 4079 disjx0 4081 tr0 4192 0elpw 4247 exmidsssn 4285 fr0 4439 elomssom 4694 rel0 4841 0ima 5084 fun0 5375 f0 5512 el2oss1o 6579 oaword1 6607 0domg 6986 nnnninf 7281 exmidfodomrlemim 7367 pw1on 7399 fzowrddc 11165 swrd00g 11167 swrdlend 11176 sum0 11885 prod0 12082 0bits 12456 ennnfonelemj0 12958 ennnfonelemkh 12969 lsp0 14372 lss0v 14379 0opn 14665 baspartn 14709 0cld 14771 ntr0 14793 bdeq0 16160 bj-omtrans 16249 nninfsellemsuc 16309 nnnninfex 16319 |
| Copyright terms: Public domain | W3C validator |