ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss GIF version

Theorem 0ss 3530
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss ∅ ⊆ 𝐴

Proof of Theorem 0ss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 649 . 2 (𝑥 ∈ ∅ → 𝑥𝐴)
32ssriv 3228 1 ∅ ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2200  wss 3197  c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  ss0b  3531  ssdifeq0  3574  sssnr  3830  ssprr  3833  uni0  3914  int0el  3952  0disj  4079  disjx0  4081  tr0  4192  0elpw  4247  exmidsssn  4285  fr0  4439  elomssom  4694  rel0  4841  0ima  5084  fun0  5375  f0  5512  el2oss1o  6579  oaword1  6607  0domg  6986  nnnninf  7281  exmidfodomrlemim  7367  pw1on  7399  fzowrddc  11165  swrd00g  11167  swrdlend  11176  sum0  11885  prod0  12082  0bits  12456  ennnfonelemj0  12958  ennnfonelemkh  12969  lsp0  14372  lss0v  14379  0opn  14665  baspartn  14709  0cld  14771  ntr0  14793  bdeq0  16160  bj-omtrans  16249  nninfsellemsuc  16309  nnnninfex  16319
  Copyright terms: Public domain W3C validator