![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2 | GIF version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 | ⊢ 𝜑 |
mp2.2 | ⊢ 𝜓 |
mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mp2 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 | . 2 ⊢ 𝜑 | |
2 | mp2.2 | . . 3 ⊢ 𝜓 | |
3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3165 0disj 4001 disjx0 4003 ontr2exmid 4525 0elsucexmid 4565 relres 4936 cnvdif 5036 funopab4 5254 fun0 5275 fvsn 5712 reltpos 6251 tpostpos 6265 tpos0 6275 oawordriexmid 6471 swoer 6563 xpider 6606 erinxp 6609 domfiexmid 6878 diffitest 6887 pw1dom2 7226 ltrel 8019 lerel 8021 frecfzennn 10426 sum0 11396 qnnen 12432 |
Copyright terms: Public domain | W3C validator |