| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2 | GIF version | ||
| Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2.1 | ⊢ 𝜑 |
| mp2.2 | ⊢ 𝜓 |
| mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mp2 | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2.1 | . 2 ⊢ 𝜑 | |
| 2 | mp2.2 | . . 3 ⊢ 𝜓 | |
| 3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3213 0disj 4059 disjx0 4061 ontr2exmid 4594 0elsucexmid 4634 relres 5009 cnvdif 5111 funopab4 5331 fun0 5355 fvsn 5807 reltpos 6366 tpostpos 6380 tpos0 6390 oawordriexmid 6586 swoer 6678 xpider 6723 erinxp 6726 domfiexmid 7008 diffitest 7017 pw1dom2 7380 ltrel 8176 lerel 8178 frecfzennn 10615 sum0 11865 qnnen 12968 hovercncf 15285 lgsquadlem1 15721 lgsquadlem2 15722 |
| Copyright terms: Public domain | W3C validator |