Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp2 | GIF version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 | ⊢ 𝜑 |
mp2.2 | ⊢ 𝜓 |
mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mp2 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 | . 2 ⊢ 𝜑 | |
2 | mp2.2 | . . 3 ⊢ 𝜓 | |
3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3162 0disj 3995 disjx0 3997 ontr2exmid 4518 0elsucexmid 4558 relres 4928 cnvdif 5027 funopab4 5245 fun0 5266 fvsn 5703 reltpos 6241 tpostpos 6255 tpos0 6265 oawordriexmid 6461 swoer 6553 xpider 6596 erinxp 6599 domfiexmid 6868 diffitest 6877 pw1dom2 7216 ltrel 7993 lerel 7995 frecfzennn 10394 sum0 11362 qnnen 12397 |
Copyright terms: Public domain | W3C validator |