| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2 | GIF version | ||
| Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2.1 | ⊢ 𝜑 |
| mp2.2 | ⊢ 𝜓 |
| mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mp2 | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2.1 | . 2 ⊢ 𝜑 | |
| 2 | mp2.2 | . . 3 ⊢ 𝜓 | |
| 3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3233 0disj 4080 disjx0 4082 ontr2exmid 4617 0elsucexmid 4657 relres 5033 cnvdif 5135 funopab4 5355 fun0 5379 fvsn 5838 reltpos 6402 tpostpos 6416 tpos0 6426 oawordriexmid 6624 swoer 6716 xpider 6761 erinxp 6764 domfiexmid 7048 diffitest 7057 pw1dom2 7420 ltrel 8216 lerel 8218 frecfzennn 10656 sum0 11907 qnnen 13010 hovercncf 15328 lgsquadlem1 15764 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |