| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2 | GIF version | ||
| Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2.1 | ⊢ 𝜑 |
| mp2.2 | ⊢ 𝜓 |
| mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mp2 | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2.1 | . 2 ⊢ 𝜑 | |
| 2 | mp2.2 | . . 3 ⊢ 𝜓 | |
| 3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3192 0disj 4030 disjx0 4032 ontr2exmid 4561 0elsucexmid 4601 relres 4974 cnvdif 5076 funopab4 5295 fun0 5316 fvsn 5757 reltpos 6308 tpostpos 6322 tpos0 6332 oawordriexmid 6528 swoer 6620 xpider 6665 erinxp 6668 domfiexmid 6939 diffitest 6948 pw1dom2 7294 ltrel 8088 lerel 8090 frecfzennn 10518 sum0 11553 qnnen 12648 hovercncf 14882 lgsquadlem1 15318 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |