| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2 | GIF version | ||
| Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2.1 | ⊢ 𝜑 |
| mp2.2 | ⊢ 𝜓 |
| mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mp2 | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2.1 | . 2 ⊢ 𝜑 | |
| 2 | mp2.2 | . . 3 ⊢ 𝜓 | |
| 3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3193 0disj 4031 disjx0 4033 ontr2exmid 4562 0elsucexmid 4602 relres 4975 cnvdif 5077 funopab4 5296 fun0 5317 fvsn 5760 reltpos 6317 tpostpos 6331 tpos0 6341 oawordriexmid 6537 swoer 6629 xpider 6674 erinxp 6677 domfiexmid 6948 diffitest 6957 pw1dom2 7312 ltrel 8107 lerel 8109 frecfzennn 10537 sum0 11572 qnnen 12675 hovercncf 14968 lgsquadlem1 15404 lgsquadlem2 15405 |
| Copyright terms: Public domain | W3C validator |