![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2 | GIF version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 | ⊢ 𝜑 |
mp2.2 | ⊢ 𝜓 |
mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mp2 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 | . 2 ⊢ 𝜑 | |
2 | mp2.2 | . . 3 ⊢ 𝜓 | |
3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 1, 4 | ax-mp 7 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: impbii 125 pm3.2i 267 sstri 3037 0disj 3850 disjx0 3852 ontr2exmid 4356 0elsucexmid 4396 relres 4756 cnvdif 4853 funopab4 5066 fun0 5087 fvsn 5508 reltpos 6031 tpostpos 6045 tpos0 6055 oawordriexmid 6247 swoer 6336 xpiderm 6379 erinxp 6382 domfiexmid 6650 diffitest 6659 ltrel 7611 lerel 7613 frecfzennn 9896 sum0 10843 pw1dom2 12193 |
Copyright terms: Public domain | W3C validator |