Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp2 | GIF version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 | ⊢ 𝜑 |
mp2.2 | ⊢ 𝜓 |
mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mp2 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 | . 2 ⊢ 𝜑 | |
2 | mp2.2 | . . 3 ⊢ 𝜓 | |
3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbii 125 pm3.2i 270 sstri 3151 0disj 3979 disjx0 3981 ontr2exmid 4502 0elsucexmid 4542 relres 4912 cnvdif 5010 funopab4 5225 fun0 5246 fvsn 5680 reltpos 6218 tpostpos 6232 tpos0 6242 oawordriexmid 6438 swoer 6529 xpider 6572 erinxp 6575 domfiexmid 6844 diffitest 6853 pw1dom2 7183 ltrel 7960 lerel 7962 frecfzennn 10361 sum0 11329 qnnen 12364 |
Copyright terms: Public domain | W3C validator |