Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp2 | GIF version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 | ⊢ 𝜑 |
mp2.2 | ⊢ 𝜓 |
mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mp2 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 | . 2 ⊢ 𝜑 | |
2 | mp2.2 | . . 3 ⊢ 𝜓 | |
3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbii 125 pm3.2i 270 sstri 3156 0disj 3986 disjx0 3988 ontr2exmid 4509 0elsucexmid 4549 relres 4919 cnvdif 5017 funopab4 5235 fun0 5256 fvsn 5691 reltpos 6229 tpostpos 6243 tpos0 6253 oawordriexmid 6449 swoer 6541 xpider 6584 erinxp 6587 domfiexmid 6856 diffitest 6865 pw1dom2 7204 ltrel 7981 lerel 7983 frecfzennn 10382 sum0 11351 qnnen 12386 |
Copyright terms: Public domain | W3C validator |