![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2 | GIF version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 | ⊢ 𝜑 |
mp2.2 | ⊢ 𝜓 |
mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
mp2 | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 | . 2 ⊢ 𝜑 | |
2 | mp2.2 | . . 3 ⊢ 𝜓 | |
3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3164 0disj 4000 disjx0 4002 ontr2exmid 4524 0elsucexmid 4564 relres 4935 cnvdif 5035 funopab4 5253 fun0 5274 fvsn 5711 reltpos 6250 tpostpos 6264 tpos0 6274 oawordriexmid 6470 swoer 6562 xpider 6605 erinxp 6608 domfiexmid 6877 diffitest 6886 pw1dom2 7225 ltrel 8018 lerel 8020 frecfzennn 10425 sum0 11395 qnnen 12431 |
Copyright terms: Public domain | W3C validator |