| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2 | GIF version | ||
| Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| mp2.1 | ⊢ 𝜑 |
| mp2.2 | ⊢ 𝜓 |
| mp2.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| mp2 | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2.1 | . 2 ⊢ 𝜑 | |
| 2 | mp2.2 | . . 3 ⊢ 𝜓 | |
| 3 | mp2.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3203 0disj 4044 disjx0 4046 ontr2exmid 4577 0elsucexmid 4617 relres 4992 cnvdif 5094 funopab4 5313 fun0 5337 fvsn 5786 reltpos 6343 tpostpos 6357 tpos0 6367 oawordriexmid 6563 swoer 6655 xpider 6700 erinxp 6703 domfiexmid 6982 diffitest 6991 pw1dom2 7346 ltrel 8141 lerel 8143 frecfzennn 10578 sum0 11743 qnnen 12846 hovercncf 15162 lgsquadlem1 15598 lgsquadlem2 15599 |
| Copyright terms: Public domain | W3C validator |