Step | Hyp | Ref
| Expression |
1 | | reex 7944 |
. . . 4
β’ β
β V |
2 | 1 | mptex 5742 |
. . 3
β’ (π¦ β β β¦ if(π¦ = 0, 0, 1)) β
V |
3 | 2 | a1i 9 |
. 2
β’
(βπ₯ β
β DECID π₯ = 0 β (π¦ β β β¦ if(π¦ = 0, 0, 1)) β V) |
4 | | 0zd 9264 |
. . . . 5
β’
((βπ₯ β
β DECID π₯ = 0 β§ π¦ β β) β 0 β
β€) |
5 | | 1zzd 9279 |
. . . . 5
β’
((βπ₯ β
β DECID π₯ = 0 β§ π¦ β β) β 1 β
β€) |
6 | | eqeq1 2184 |
. . . . . . 7
β’ (π₯ = π¦ β (π₯ = 0 β π¦ = 0)) |
7 | 6 | dcbid 838 |
. . . . . 6
β’ (π₯ = π¦ β (DECID π₯ = 0 β DECID
π¦ = 0)) |
8 | 7 | rspccva 2840 |
. . . . 5
β’
((βπ₯ β
β DECID π₯ = 0 β§ π¦ β β) β DECID
π¦ = 0) |
9 | 4, 5, 8 | ifcldcd 3570 |
. . . 4
β’
((βπ₯ β
β DECID π₯ = 0 β§ π¦ β β) β if(π¦ = 0, 0, 1) β β€) |
10 | 9 | fmpttd 5671 |
. . 3
β’
(βπ₯ β
β DECID π₯ = 0 β (π¦ β β β¦ if(π¦ = 0, 0,
1)):ββΆβ€) |
11 | | 0re 7956 |
. . . . . 6
β’ 0 β
β |
12 | | 0zd 9264 |
. . . . . . . 8
β’ (β€
β 0 β β€) |
13 | | 1zzd 9279 |
. . . . . . . 8
β’ (β€
β 1 β β€) |
14 | | eqid 2177 |
. . . . . . . . . . 11
β’ 0 =
0 |
15 | 14 | orci 731 |
. . . . . . . . . 10
β’ (0 = 0
β¨ Β¬ 0 = 0) |
16 | | df-dc 835 |
. . . . . . . . . 10
β’
(DECID 0 = 0 β (0 = 0 β¨ Β¬ 0 =
0)) |
17 | 15, 16 | mpbir 146 |
. . . . . . . . 9
β’
DECID 0 = 0 |
18 | 17 | a1i 9 |
. . . . . . . 8
β’ (β€
β DECID 0 = 0) |
19 | 12, 13, 18 | ifcldcd 3570 |
. . . . . . 7
β’ (β€
β if(0 = 0, 0, 1) β β€) |
20 | 19 | mptru 1362 |
. . . . . 6
β’ if(0 = 0,
0, 1) β β€ |
21 | | eqeq1 2184 |
. . . . . . . 8
β’ (π¦ = 0 β (π¦ = 0 β 0 = 0)) |
22 | 21 | ifbid 3555 |
. . . . . . 7
β’ (π¦ = 0 β if(π¦ = 0, 0, 1) = if(0 = 0, 0,
1)) |
23 | | eqid 2177 |
. . . . . . 7
β’ (π¦ β β β¦ if(π¦ = 0, 0, 1)) = (π¦ β β β¦ if(π¦ = 0, 0, 1)) |
24 | 22, 23 | fvmptg 5592 |
. . . . . 6
β’ ((0
β β β§ if(0 = 0, 0, 1) β β€) β ((π¦ β β β¦ if(π¦ = 0, 0, 1))β0) = if(0 =
0, 0, 1)) |
25 | 11, 20, 24 | mp2an 426 |
. . . . 5
β’ ((π¦ β β β¦ if(π¦ = 0, 0, 1))β0) = if(0 =
0, 0, 1) |
26 | 14 | iftruei 3540 |
. . . . 5
β’ if(0 = 0,
0, 1) = 0 |
27 | 25, 26 | eqtri 2198 |
. . . 4
β’ ((π¦ β β β¦ if(π¦ = 0, 0, 1))β0) =
0 |
28 | 27 | a1i 9 |
. . 3
β’
(βπ₯ β
β DECID π₯ = 0 β ((π¦ β β β¦ if(π¦ = 0, 0, 1))β0) = 0) |
29 | | 1ne0 8986 |
. . . . . 6
β’ 1 β
0 |
30 | | eqeq1 2184 |
. . . . . . . . . 10
β’ (π¦ = π§ β (π¦ = 0 β π§ = 0)) |
31 | 30 | ifbid 3555 |
. . . . . . . . 9
β’ (π¦ = π§ β if(π¦ = 0, 0, 1) = if(π§ = 0, 0, 1)) |
32 | | rpre 9659 |
. . . . . . . . . 10
β’ (π§ β β+
β π§ β
β) |
33 | 32 | adantl 277 |
. . . . . . . . 9
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β π§ β
β) |
34 | | 0zd 9264 |
. . . . . . . . . 10
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β 0 β
β€) |
35 | | 1zzd 9279 |
. . . . . . . . . 10
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β 1 β
β€) |
36 | | eqeq1 2184 |
. . . . . . . . . . . 12
β’ (π₯ = π§ β (π₯ = 0 β π§ = 0)) |
37 | 36 | dcbid 838 |
. . . . . . . . . . 11
β’ (π₯ = π§ β (DECID π₯ = 0 β DECID
π§ = 0)) |
38 | | simpl 109 |
. . . . . . . . . . 11
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β
βπ₯ β β
DECID π₯ =
0) |
39 | 37, 38, 33 | rspcdva 2846 |
. . . . . . . . . 10
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β
DECID π§ =
0) |
40 | 34, 35, 39 | ifcldcd 3570 |
. . . . . . . . 9
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β if(π§ = 0, 0, 1) β
β€) |
41 | 23, 31, 33, 40 | fvmptd3 5609 |
. . . . . . . 8
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ§) = if(π§ = 0, 0, 1)) |
42 | | rpne0 9668 |
. . . . . . . . . . 11
β’ (π§ β β+
β π§ β
0) |
43 | 42 | neneqd 2368 |
. . . . . . . . . 10
β’ (π§ β β+
β Β¬ π§ =
0) |
44 | 43 | iffalsed 3544 |
. . . . . . . . 9
β’ (π§ β β+
β if(π§ = 0, 0, 1) =
1) |
45 | 44 | adantl 277 |
. . . . . . . 8
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β if(π§ = 0, 0, 1) =
1) |
46 | 41, 45 | eqtrd 2210 |
. . . . . . 7
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ§) = 1) |
47 | 46 | neeq1d 2365 |
. . . . . 6
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β (((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ§) β 0 β 1 β
0)) |
48 | 29, 47 | mpbiri 168 |
. . . . 5
β’
((βπ₯ β
β DECID π₯ = 0 β§ π§ β β+) β ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ§) β 0) |
49 | 48 | ralrimiva 2550 |
. . . 4
β’
(βπ₯ β
β DECID π₯ = 0 β βπ§ β β+ ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ§) β 0) |
50 | | fveq2 5515 |
. . . . . 6
β’ (π§ = π₯ β ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ§) = ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ₯)) |
51 | 50 | neeq1d 2365 |
. . . . 5
β’ (π§ = π₯ β (((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ§) β 0 β ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ₯) β 0)) |
52 | 51 | cbvralv 2703 |
. . . 4
β’
(βπ§ β
β+ ((π¦
β β β¦ if(π¦
= 0, 0, 1))βπ§) β 0
β βπ₯ β
β+ ((π¦
β β β¦ if(π¦
= 0, 0, 1))βπ₯) β
0) |
53 | 49, 52 | sylib 122 |
. . 3
β’
(βπ₯ β
β DECID π₯ = 0 β βπ₯ β β+ ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ₯) β 0) |
54 | 10, 28, 53 | 3jca 1177 |
. 2
β’
(βπ₯ β
β DECID π₯ = 0 β ((π¦ β β β¦ if(π¦ = 0, 0, 1)):ββΆβ€ β§
((π¦ β β β¦
if(π¦ = 0, 0, 1))β0) =
0 β§ βπ₯ β
β+ ((π¦
β β β¦ if(π¦
= 0, 0, 1))βπ₯) β
0)) |
55 | | feq1 5348 |
. . 3
β’ (π = (π¦ β β β¦ if(π¦ = 0, 0, 1)) β (π:ββΆβ€ β (π¦ β β β¦ if(π¦ = 0, 0,
1)):ββΆβ€)) |
56 | | fveq1 5514 |
. . . 4
β’ (π = (π¦ β β β¦ if(π¦ = 0, 0, 1)) β (πβ0) = ((π¦ β β β¦ if(π¦ = 0, 0, 1))β0)) |
57 | 56 | eqeq1d 2186 |
. . 3
β’ (π = (π¦ β β β¦ if(π¦ = 0, 0, 1)) β ((πβ0) = 0 β ((π¦ β β β¦ if(π¦ = 0, 0, 1))β0) = 0)) |
58 | | fveq1 5514 |
. . . . 5
β’ (π = (π¦ β β β¦ if(π¦ = 0, 0, 1)) β (πβπ₯) = ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ₯)) |
59 | 58 | neeq1d 2365 |
. . . 4
β’ (π = (π¦ β β β¦ if(π¦ = 0, 0, 1)) β ((πβπ₯) β 0 β ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ₯) β 0)) |
60 | 59 | ralbidv 2477 |
. . 3
β’ (π = (π¦ β β β¦ if(π¦ = 0, 0, 1)) β (βπ₯ β β+
(πβπ₯) β 0 β βπ₯ β β+ ((π¦ β β β¦ if(π¦ = 0, 0, 1))βπ₯) β 0)) |
61 | 55, 57, 60 | 3anbi123d 1312 |
. 2
β’ (π = (π¦ β β β¦ if(π¦ = 0, 0, 1)) β ((π:ββΆβ€ β§ (πβ0) = 0 β§
βπ₯ β
β+ (πβπ₯) β 0) β ((π¦ β β β¦ if(π¦ = 0, 0, 1)):ββΆβ€ β§
((π¦ β β β¦
if(π¦ = 0, 0, 1))β0) =
0 β§ βπ₯ β
β+ ((π¦
β β β¦ if(π¦
= 0, 0, 1))βπ₯) β
0))) |
62 | 3, 54, 61 | elabd 2882 |
1
β’
(βπ₯ β
β DECID π₯ = 0 β βπ(π:ββΆβ€ β§ (πβ0) = 0 β§
βπ₯ β
β+ (πβπ₯) β 0)) |