| Step | Hyp | Ref
| Expression |
| 1 | | reex 8013 |
. . . 4
⊢ ℝ
∈ V |
| 2 | 1 | mptex 5788 |
. . 3
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈
V |
| 3 | 2 | a1i 9 |
. 2
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈ V) |
| 4 | | 0zd 9338 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 0 ∈
ℤ) |
| 5 | | 1zzd 9353 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 1 ∈
ℤ) |
| 6 | | eqeq1 2203 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0)) |
| 7 | 6 | dcbid 839 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (DECID 𝑥 = 0 ↔ DECID
𝑦 = 0)) |
| 8 | 7 | rspccva 2867 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → DECID
𝑦 = 0) |
| 9 | 4, 5, 8 | ifcldcd 3597 |
. . . 4
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 = 0, 0, 1) ∈ ℤ) |
| 10 | 9 | fmpttd 5717 |
. . 3
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0,
1)):ℝ⟶ℤ) |
| 11 | | 0re 8026 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 12 | | 0zd 9338 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ ℤ) |
| 13 | | 1zzd 9353 |
. . . . . . . 8
⊢ (⊤
→ 1 ∈ ℤ) |
| 14 | | eqid 2196 |
. . . . . . . . . . 11
⊢ 0 =
0 |
| 15 | 14 | orci 732 |
. . . . . . . . . 10
⊢ (0 = 0
∨ ¬ 0 = 0) |
| 16 | | df-dc 836 |
. . . . . . . . . 10
⊢
(DECID 0 = 0 ↔ (0 = 0 ∨ ¬ 0 =
0)) |
| 17 | 15, 16 | mpbir 146 |
. . . . . . . . 9
⊢
DECID 0 = 0 |
| 18 | 17 | a1i 9 |
. . . . . . . 8
⊢ (⊤
→ DECID 0 = 0) |
| 19 | 12, 13, 18 | ifcldcd 3597 |
. . . . . . 7
⊢ (⊤
→ if(0 = 0, 0, 1) ∈ ℤ) |
| 20 | 19 | mptru 1373 |
. . . . . 6
⊢ if(0 = 0,
0, 1) ∈ ℤ |
| 21 | | eqeq1 2203 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑦 = 0 ↔ 0 = 0)) |
| 22 | 21 | ifbid 3582 |
. . . . . . 7
⊢ (𝑦 = 0 → if(𝑦 = 0, 0, 1) = if(0 = 0, 0,
1)) |
| 23 | | eqid 2196 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) |
| 24 | 22, 23 | fvmptg 5637 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ if(0 = 0, 0, 1) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 =
0, 0, 1)) |
| 25 | 11, 20, 24 | mp2an 426 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 =
0, 0, 1) |
| 26 | 14 | iftruei 3567 |
. . . . 5
⊢ if(0 = 0,
0, 1) = 0 |
| 27 | 25, 26 | eqtri 2217 |
. . . 4
⊢ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) =
0 |
| 28 | 27 | a1i 9 |
. . 3
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0) |
| 29 | | 1ne0 9058 |
. . . . . 6
⊢ 1 ≠
0 |
| 30 | | eqeq1 2203 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 = 0 ↔ 𝑧 = 0)) |
| 31 | 30 | ifbid 3582 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → if(𝑦 = 0, 0, 1) = if(𝑧 = 0, 0, 1)) |
| 32 | | rpre 9735 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ) |
| 33 | 32 | adantl 277 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈
ℝ) |
| 34 | | 0zd 9338 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈
ℤ) |
| 35 | | 1zzd 9353 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈
ℤ) |
| 36 | | eqeq1 2203 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0)) |
| 37 | 36 | dcbid 839 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (DECID 𝑥 = 0 ↔ DECID
𝑧 = 0)) |
| 38 | | simpl 109 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) →
∀𝑥 ∈ ℝ
DECID 𝑥 =
0) |
| 39 | 37, 38, 33 | rspcdva 2873 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) →
DECID 𝑧 =
0) |
| 40 | 34, 35, 39 | ifcldcd 3597 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) ∈
ℤ) |
| 41 | 23, 31, 33, 40 | fvmptd3 5655 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = if(𝑧 = 0, 0, 1)) |
| 42 | | rpne0 9744 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ≠
0) |
| 43 | 42 | neneqd 2388 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ+
→ ¬ 𝑧 =
0) |
| 44 | 43 | iffalsed 3571 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ+
→ if(𝑧 = 0, 0, 1) =
1) |
| 45 | 44 | adantl 277 |
. . . . . . . 8
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) =
1) |
| 46 | 41, 45 | eqtrd 2229 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = 1) |
| 47 | 46 | neeq1d 2385 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ 1 ≠
0)) |
| 48 | 29, 47 | mpbiri 168 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0) |
| 49 | 48 | ralrimiva 2570 |
. . . 4
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 = 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0) |
| 50 | | fveq2 5558 |
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥)) |
| 51 | 50 | neeq1d 2385 |
. . . . 5
⊢ (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)) |
| 52 | 51 | cbvralv 2729 |
. . . 4
⊢
(∀𝑧 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
= 0, 0, 1))‘𝑧) ≠ 0
↔ ∀𝑥 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
= 0, 0, 1))‘𝑥) ≠
0) |
| 53 | 49, 52 | sylib 122 |
. . 3
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 = 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0) |
| 54 | 10, 28, 53 | 3jca 1179 |
. 2
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧
((𝑦 ∈ ℝ ↦
if(𝑦 = 0, 0, 1))‘0) =
0 ∧ ∀𝑥 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
= 0, 0, 1))‘𝑥) ≠
0)) |
| 55 | | feq1 5390 |
. . 3
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0,
1)):ℝ⟶ℤ)) |
| 56 | | fveq1 5557 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0)) |
| 57 | 56 | eqeq1d 2205 |
. . 3
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0)) |
| 58 | | fveq1 5557 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓‘𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥)) |
| 59 | 58 | neeq1d 2385 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓‘𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)) |
| 60 | 59 | ralbidv 2497 |
. . 3
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (∀𝑥 ∈ ℝ+
(𝑓‘𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)) |
| 61 | 55, 57, 60 | 3anbi123d 1323 |
. 2
⊢ (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧
∀𝑥 ∈
ℝ+ (𝑓‘𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧
((𝑦 ∈ ℝ ↦
if(𝑦 = 0, 0, 1))‘0) =
0 ∧ ∀𝑥 ∈
ℝ+ ((𝑦
∈ ℝ ↦ if(𝑦
= 0, 0, 1))‘𝑥) ≠
0))) |
| 62 | 3, 54, 61 | elabd 2909 |
1
⊢
(∀𝑥 ∈
ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧
∀𝑥 ∈
ℝ+ (𝑓‘𝑥) ≠ 0)) |