Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dceqnconst GIF version

Theorem dceqnconst 16073
Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 16068 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
dceqnconst (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Distinct variable group:   𝑥,𝑓

Proof of Theorem dceqnconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8066 . . . 4 ℝ ∈ V
21mptex 5817 . . 3 (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈ V
32a1i 9 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈ V)
4 0zd 9391 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 0 ∈ ℤ)
5 1zzd 9406 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 1 ∈ ℤ)
6 eqeq1 2213 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0))
76dcbid 840 . . . . . 6 (𝑥 = 𝑦 → (DECID 𝑥 = 0 ↔ DECID 𝑦 = 0))
87rspccva 2877 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → DECID 𝑦 = 0)
94, 5, 8ifcldcd 3609 . . . 4 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 = 0, 0, 1) ∈ ℤ)
109fmpttd 5742 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ)
11 0re 8079 . . . . . 6 0 ∈ ℝ
12 0zd 9391 . . . . . . . 8 (⊤ → 0 ∈ ℤ)
13 1zzd 9406 . . . . . . . 8 (⊤ → 1 ∈ ℤ)
14 eqid 2206 . . . . . . . . . . 11 0 = 0
1514orci 733 . . . . . . . . . 10 (0 = 0 ∨ ¬ 0 = 0)
16 df-dc 837 . . . . . . . . . 10 (DECID 0 = 0 ↔ (0 = 0 ∨ ¬ 0 = 0))
1715, 16mpbir 146 . . . . . . . . 9 DECID 0 = 0
1817a1i 9 . . . . . . . 8 (⊤ → DECID 0 = 0)
1912, 13, 18ifcldcd 3609 . . . . . . 7 (⊤ → if(0 = 0, 0, 1) ∈ ℤ)
2019mptru 1382 . . . . . 6 if(0 = 0, 0, 1) ∈ ℤ
21 eqeq1 2213 . . . . . . . 8 (𝑦 = 0 → (𝑦 = 0 ↔ 0 = 0))
2221ifbid 3593 . . . . . . 7 (𝑦 = 0 → if(𝑦 = 0, 0, 1) = if(0 = 0, 0, 1))
23 eqid 2206 . . . . . . 7 (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))
2422, 23fvmptg 5662 . . . . . 6 ((0 ∈ ℝ ∧ if(0 = 0, 0, 1) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 = 0, 0, 1))
2511, 20, 24mp2an 426 . . . . 5 ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 = 0, 0, 1)
2614iftruei 3578 . . . . 5 if(0 = 0, 0, 1) = 0
2725, 26eqtri 2227 . . . 4 ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0
2827a1i 9 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0)
29 1ne0 9111 . . . . . 6 1 ≠ 0
30 eqeq1 2213 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 = 0 ↔ 𝑧 = 0))
3130ifbid 3593 . . . . . . . . 9 (𝑦 = 𝑧 → if(𝑦 = 0, 0, 1) = if(𝑧 = 0, 0, 1))
32 rpre 9789 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
3332adantl 277 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
34 0zd 9391 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈ ℤ)
35 1zzd 9406 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℤ)
36 eqeq1 2213 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0))
3736dcbid 840 . . . . . . . . . . 11 (𝑥 = 𝑧 → (DECID 𝑥 = 0 ↔ DECID 𝑧 = 0))
38 simpl 109 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ∀𝑥 ∈ ℝ DECID 𝑥 = 0)
3937, 38, 33rspcdva 2883 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → DECID 𝑧 = 0)
4034, 35, 39ifcldcd 3609 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) ∈ ℤ)
4123, 31, 33, 40fvmptd3 5680 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = if(𝑧 = 0, 0, 1))
42 rpne0 9798 . . . . . . . . . . 11 (𝑧 ∈ ℝ+𝑧 ≠ 0)
4342neneqd 2398 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → ¬ 𝑧 = 0)
4443iffalsed 3582 . . . . . . . . 9 (𝑧 ∈ ℝ+ → if(𝑧 = 0, 0, 1) = 1)
4544adantl 277 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) = 1)
4641, 45eqtrd 2239 . . . . . . 7 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = 1)
4746neeq1d 2395 . . . . . 6 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ 1 ≠ 0))
4829, 47mpbiri 168 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0)
4948ralrimiva 2580 . . . 4 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0)
50 fveq2 5583 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥))
5150neeq1d 2395 . . . . 5 (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
5251cbvralv 2739 . . . 4 (∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)
5349, 52sylib 122 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)
5410, 28, 533jca 1180 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
55 feq1 5414 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ))
56 fveq1 5582 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0))
5756eqeq1d 2215 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0))
58 fveq1 5582 . . . . 5 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥))
5958neeq1d 2395 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
6059ralbidv 2507 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
6155, 57, 603anbi123d 1325 . 2 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)))
623, 54, 61elabd 2919 1 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wtru 1374  wex 1516  wcel 2177  wne 2377  wral 2485  Vcvv 2773  ifcif 3572  cmpt 4109  wf 5272  cfv 5276  cr 7931  0cc0 7932  1c1 7933  cz 9379  +crp 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-z 9380  df-rp 9783
This theorem is referenced by:  dcapnconstALT  16075
  Copyright terms: Public domain W3C validator