Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dceqnconst GIF version

Theorem dceqnconst 16458
Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 16453 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
dceqnconst (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Distinct variable group:   𝑥,𝑓

Proof of Theorem dceqnconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8141 . . . 4 ℝ ∈ V
21mptex 5869 . . 3 (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈ V
32a1i 9 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈ V)
4 0zd 9466 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 0 ∈ ℤ)
5 1zzd 9481 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 1 ∈ ℤ)
6 eqeq1 2236 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0))
76dcbid 843 . . . . . 6 (𝑥 = 𝑦 → (DECID 𝑥 = 0 ↔ DECID 𝑦 = 0))
87rspccva 2906 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → DECID 𝑦 = 0)
94, 5, 8ifcldcd 3640 . . . 4 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 = 0, 0, 1) ∈ ℤ)
109fmpttd 5792 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ)
11 0re 8154 . . . . . 6 0 ∈ ℝ
12 0zd 9466 . . . . . . . 8 (⊤ → 0 ∈ ℤ)
13 1zzd 9481 . . . . . . . 8 (⊤ → 1 ∈ ℤ)
14 eqid 2229 . . . . . . . . . . 11 0 = 0
1514orci 736 . . . . . . . . . 10 (0 = 0 ∨ ¬ 0 = 0)
16 df-dc 840 . . . . . . . . . 10 (DECID 0 = 0 ↔ (0 = 0 ∨ ¬ 0 = 0))
1715, 16mpbir 146 . . . . . . . . 9 DECID 0 = 0
1817a1i 9 . . . . . . . 8 (⊤ → DECID 0 = 0)
1912, 13, 18ifcldcd 3640 . . . . . . 7 (⊤ → if(0 = 0, 0, 1) ∈ ℤ)
2019mptru 1404 . . . . . 6 if(0 = 0, 0, 1) ∈ ℤ
21 eqeq1 2236 . . . . . . . 8 (𝑦 = 0 → (𝑦 = 0 ↔ 0 = 0))
2221ifbid 3624 . . . . . . 7 (𝑦 = 0 → if(𝑦 = 0, 0, 1) = if(0 = 0, 0, 1))
23 eqid 2229 . . . . . . 7 (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))
2422, 23fvmptg 5712 . . . . . 6 ((0 ∈ ℝ ∧ if(0 = 0, 0, 1) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 = 0, 0, 1))
2511, 20, 24mp2an 426 . . . . 5 ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 = 0, 0, 1)
2614iftruei 3608 . . . . 5 if(0 = 0, 0, 1) = 0
2725, 26eqtri 2250 . . . 4 ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0
2827a1i 9 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0)
29 1ne0 9186 . . . . . 6 1 ≠ 0
30 eqeq1 2236 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 = 0 ↔ 𝑧 = 0))
3130ifbid 3624 . . . . . . . . 9 (𝑦 = 𝑧 → if(𝑦 = 0, 0, 1) = if(𝑧 = 0, 0, 1))
32 rpre 9864 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
3332adantl 277 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
34 0zd 9466 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈ ℤ)
35 1zzd 9481 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℤ)
36 eqeq1 2236 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0))
3736dcbid 843 . . . . . . . . . . 11 (𝑥 = 𝑧 → (DECID 𝑥 = 0 ↔ DECID 𝑧 = 0))
38 simpl 109 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ∀𝑥 ∈ ℝ DECID 𝑥 = 0)
3937, 38, 33rspcdva 2912 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → DECID 𝑧 = 0)
4034, 35, 39ifcldcd 3640 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) ∈ ℤ)
4123, 31, 33, 40fvmptd3 5730 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = if(𝑧 = 0, 0, 1))
42 rpne0 9873 . . . . . . . . . . 11 (𝑧 ∈ ℝ+𝑧 ≠ 0)
4342neneqd 2421 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → ¬ 𝑧 = 0)
4443iffalsed 3612 . . . . . . . . 9 (𝑧 ∈ ℝ+ → if(𝑧 = 0, 0, 1) = 1)
4544adantl 277 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) = 1)
4641, 45eqtrd 2262 . . . . . . 7 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = 1)
4746neeq1d 2418 . . . . . 6 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ 1 ≠ 0))
4829, 47mpbiri 168 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0)
4948ralrimiva 2603 . . . 4 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0)
50 fveq2 5629 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥))
5150neeq1d 2418 . . . . 5 (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
5251cbvralv 2765 . . . 4 (∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)
5349, 52sylib 122 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)
5410, 28, 533jca 1201 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
55 feq1 5456 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ))
56 fveq1 5628 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0))
5756eqeq1d 2238 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0))
58 fveq1 5628 . . . . 5 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥))
5958neeq1d 2418 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
6059ralbidv 2530 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
6155, 57, 603anbi123d 1346 . 2 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)))
623, 54, 61elabd 2948 1 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wtru 1396  wex 1538  wcel 2200  wne 2400  wral 2508  Vcvv 2799  ifcif 3602  cmpt 4145  wf 5314  cfv 5318  cr 8006  0cc0 8007  1c1 8008  cz 9454  +crp 9857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-z 9455  df-rp 9858
This theorem is referenced by:  dcapnconstALT  16460
  Copyright terms: Public domain W3C validator