Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dceqnconst GIF version

Theorem dceqnconst 16339
Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 16334 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
dceqnconst (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Distinct variable group:   𝑥,𝑓

Proof of Theorem dceqnconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8101 . . . 4 ℝ ∈ V
21mptex 5838 . . 3 (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈ V
32a1i 9 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) ∈ V)
4 0zd 9426 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 0 ∈ ℤ)
5 1zzd 9441 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → 1 ∈ ℤ)
6 eqeq1 2216 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0))
76dcbid 842 . . . . . 6 (𝑥 = 𝑦 → (DECID 𝑥 = 0 ↔ DECID 𝑦 = 0))
87rspccva 2886 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → DECID 𝑦 = 0)
94, 5, 8ifcldcd 3620 . . . 4 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑦 ∈ ℝ) → if(𝑦 = 0, 0, 1) ∈ ℤ)
109fmpttd 5763 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ)
11 0re 8114 . . . . . 6 0 ∈ ℝ
12 0zd 9426 . . . . . . . 8 (⊤ → 0 ∈ ℤ)
13 1zzd 9441 . . . . . . . 8 (⊤ → 1 ∈ ℤ)
14 eqid 2209 . . . . . . . . . . 11 0 = 0
1514orci 735 . . . . . . . . . 10 (0 = 0 ∨ ¬ 0 = 0)
16 df-dc 839 . . . . . . . . . 10 (DECID 0 = 0 ↔ (0 = 0 ∨ ¬ 0 = 0))
1715, 16mpbir 146 . . . . . . . . 9 DECID 0 = 0
1817a1i 9 . . . . . . . 8 (⊤ → DECID 0 = 0)
1912, 13, 18ifcldcd 3620 . . . . . . 7 (⊤ → if(0 = 0, 0, 1) ∈ ℤ)
2019mptru 1384 . . . . . 6 if(0 = 0, 0, 1) ∈ ℤ
21 eqeq1 2216 . . . . . . . 8 (𝑦 = 0 → (𝑦 = 0 ↔ 0 = 0))
2221ifbid 3604 . . . . . . 7 (𝑦 = 0 → if(𝑦 = 0, 0, 1) = if(0 = 0, 0, 1))
23 eqid 2209 . . . . . . 7 (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))
2422, 23fvmptg 5683 . . . . . 6 ((0 ∈ ℝ ∧ if(0 = 0, 0, 1) ∈ ℤ) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 = 0, 0, 1))
2511, 20, 24mp2an 426 . . . . 5 ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = if(0 = 0, 0, 1)
2614iftruei 3588 . . . . 5 if(0 = 0, 0, 1) = 0
2725, 26eqtri 2230 . . . 4 ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0
2827a1i 9 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0)
29 1ne0 9146 . . . . . 6 1 ≠ 0
30 eqeq1 2216 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 = 0 ↔ 𝑧 = 0))
3130ifbid 3604 . . . . . . . . 9 (𝑦 = 𝑧 → if(𝑦 = 0, 0, 1) = if(𝑧 = 0, 0, 1))
32 rpre 9824 . . . . . . . . . 10 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
3332adantl 277 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
34 0zd 9426 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 0 ∈ ℤ)
35 1zzd 9441 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℤ)
36 eqeq1 2216 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0))
3736dcbid 842 . . . . . . . . . . 11 (𝑥 = 𝑧 → (DECID 𝑥 = 0 ↔ DECID 𝑧 = 0))
38 simpl 109 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ∀𝑥 ∈ ℝ DECID 𝑥 = 0)
3937, 38, 33rspcdva 2892 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → DECID 𝑧 = 0)
4034, 35, 39ifcldcd 3620 . . . . . . . . 9 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) ∈ ℤ)
4123, 31, 33, 40fvmptd3 5701 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = if(𝑧 = 0, 0, 1))
42 rpne0 9833 . . . . . . . . . . 11 (𝑧 ∈ ℝ+𝑧 ≠ 0)
4342neneqd 2401 . . . . . . . . . 10 (𝑧 ∈ ℝ+ → ¬ 𝑧 = 0)
4443iffalsed 3592 . . . . . . . . 9 (𝑧 ∈ ℝ+ → if(𝑧 = 0, 0, 1) = 1)
4544adantl 277 . . . . . . . 8 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → if(𝑧 = 0, 0, 1) = 1)
4641, 45eqtrd 2242 . . . . . . 7 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = 1)
4746neeq1d 2398 . . . . . 6 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ 1 ≠ 0))
4829, 47mpbiri 168 . . . . 5 ((∀𝑥 ∈ ℝ DECID 𝑥 = 0 ∧ 𝑧 ∈ ℝ+) → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0)
4948ralrimiva 2583 . . . 4 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0)
50 fveq2 5603 . . . . . 6 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥))
5150neeq1d 2398 . . . . 5 (𝑧 = 𝑥 → (((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
5251cbvralv 2745 . . . 4 (∀𝑧 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑧) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)
5349, 52sylib 122 . . 3 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)
5410, 28, 533jca 1182 . 2 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
55 feq1 5432 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓:ℝ⟶ℤ ↔ (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ))
56 fveq1 5602 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓‘0) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0))
5756eqeq1d 2218 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓‘0) = 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0))
58 fveq1 5602 . . . . 5 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (𝑓𝑥) = ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥))
5958neeq1d 2398 . . . 4 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓𝑥) ≠ 0 ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
6059ralbidv 2510 . . 3 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → (∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0))
6155, 57, 603anbi123d 1327 . 2 (𝑓 = (𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)) → ((𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0) ↔ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1)):ℝ⟶ℤ ∧ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ ((𝑦 ∈ ℝ ↦ if(𝑦 = 0, 0, 1))‘𝑥) ≠ 0)))
623, 54, 61elabd 2928 1 (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓𝑥) ≠ 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  DECID wdc 838  w3a 983   = wceq 1375  wtru 1376  wex 1518  wcel 2180  wne 2380  wral 2488  Vcvv 2779  ifcif 3582  cmpt 4124  wf 5290  cfv 5294  cr 7966  0cc0 7967  1c1 7968  cz 9414  +crp 9817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-z 9415  df-rp 9818
This theorem is referenced by:  dcapnconstALT  16341
  Copyright terms: Public domain W3C validator