| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrivcvgap0 | GIF version | ||
| Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| ntrivcvgn0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| ntrivcvgn0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| ntrivcvgn0.3 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) |
| ntrivcvgap0.4 | ⊢ (𝜑 → 𝑋 # 0) |
| Ref | Expression |
|---|---|
| ntrivcvgap0 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgn0.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | uzid 9675 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | ntrivcvgn0.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrrdi 2300 | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 6 | ntrivcvgn0.3 | . . . 4 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) | |
| 7 | climrel 11641 | . . . . 5 ⊢ Rel ⇝ | |
| 8 | 7 | brrelex2i 4724 | . . . 4 ⊢ (seq𝑀( · , 𝐹) ⇝ 𝑋 → 𝑋 ∈ V) |
| 9 | 6, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 10 | ntrivcvgap0.4 | . . . 4 ⊢ (𝜑 → 𝑋 # 0) | |
| 11 | 10, 6 | jca 306 | . . 3 ⊢ (𝜑 → (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)) |
| 12 | breq1 4051 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦 # 0 ↔ 𝑋 # 0)) | |
| 13 | breq2 4052 | . . . 4 ⊢ (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋)) | |
| 14 | 12, 13 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))) |
| 15 | 9, 11, 14 | elabd 2920 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 16 | seqeq1 10608 | . . . . . 6 ⊢ (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹)) | |
| 17 | 16 | breq1d 4058 | . . . . 5 ⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 18 | 17 | anbi2d 464 | . . . 4 ⊢ (𝑛 = 𝑀 → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 19 | 18 | exbidv 1849 | . . 3 ⊢ (𝑛 = 𝑀 → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
| 20 | 19 | rspcev 2879 | . 2 ⊢ ((𝑀 ∈ 𝑍 ∧ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| 21 | 5, 15, 20 | syl2anc 411 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 class class class wbr 4048 ‘cfv 5277 0cc0 7938 · cmul 7943 # cap 8667 ℤcz 9385 ℤ≥cuz 9661 seqcseq 10605 ⇝ cli 11639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-pre-ltirr 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-neg 8259 df-z 9386 df-uz 9662 df-seqfrec 10606 df-clim 11640 |
| This theorem is referenced by: zprodap0 11942 |
| Copyright terms: Public domain | W3C validator |