![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ntrivcvgap0 | GIF version |
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
ntrivcvgn0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ntrivcvgn0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
ntrivcvgn0.3 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) |
ntrivcvgap0.4 | ⊢ (𝜑 → 𝑋 # 0) |
Ref | Expression |
---|---|
ntrivcvgap0 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvgn0.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzid 9560 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
4 | ntrivcvgn0.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 3, 4 | eleqtrrdi 2283 | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
6 | ntrivcvgn0.3 | . . . 4 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) | |
7 | climrel 11306 | . . . . 5 ⊢ Rel ⇝ | |
8 | 7 | brrelex2i 4685 | . . . 4 ⊢ (seq𝑀( · , 𝐹) ⇝ 𝑋 → 𝑋 ∈ V) |
9 | 6, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
10 | ntrivcvgap0.4 | . . . 4 ⊢ (𝜑 → 𝑋 # 0) | |
11 | 10, 6 | jca 306 | . . 3 ⊢ (𝜑 → (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)) |
12 | breq1 4021 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝑦 # 0 ↔ 𝑋 # 0)) | |
13 | breq2 4022 | . . . 4 ⊢ (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋)) | |
14 | 12, 13 | anbi12d 473 | . . 3 ⊢ (𝑦 = 𝑋 → ((𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))) |
15 | 9, 11, 14 | elabd 2897 | . 2 ⊢ (𝜑 → ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
16 | seqeq1 10466 | . . . . . 6 ⊢ (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹)) | |
17 | 16 | breq1d 4028 | . . . . 5 ⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
18 | 17 | anbi2d 464 | . . . 4 ⊢ (𝑛 = 𝑀 → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
19 | 18 | exbidv 1836 | . . 3 ⊢ (𝑛 = 𝑀 → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))) |
20 | 19 | rspcev 2856 | . 2 ⊢ ((𝑀 ∈ 𝑍 ∧ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
21 | 5, 15, 20 | syl2anc 411 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∃wrex 2469 Vcvv 2752 class class class wbr 4018 ‘cfv 5231 0cc0 7829 · cmul 7834 # cap 8556 ℤcz 9271 ℤ≥cuz 9546 seqcseq 10463 ⇝ cli 11304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-pre-ltirr 7941 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-fun 5233 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-recs 6324 df-frec 6410 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-neg 8149 df-z 9272 df-uz 9547 df-seqfrec 10464 df-clim 11305 |
This theorem is referenced by: zprodap0 11607 |
Copyright terms: Public domain | W3C validator |