ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap0 GIF version

Theorem ntrivcvgap0 11692
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1 𝑍 = (ℤ𝑀)
ntrivcvgn0.2 (𝜑𝑀 ∈ ℤ)
ntrivcvgn0.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgap0.4 (𝜑𝑋 # 0)
Assertion
Ref Expression
ntrivcvgap0 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Distinct variable groups:   𝑛,𝐹,𝑦   𝑛,𝑀,𝑦   𝑦,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑛)   𝑋(𝑛)   𝑍(𝑦)

Proof of Theorem ntrivcvgap0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4 (𝜑𝑀 ∈ ℤ)
2 uzid 9606 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
4 ntrivcvgn0.1 . . 3 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2287 . 2 (𝜑𝑀𝑍)
6 ntrivcvgn0.3 . . . 4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
7 climrel 11423 . . . . 5 Rel ⇝
87brrelex2i 4703 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ V)
96, 8syl 14 . . 3 (𝜑𝑋 ∈ V)
10 ntrivcvgap0.4 . . . 4 (𝜑𝑋 # 0)
1110, 6jca 306 . . 3 (𝜑 → (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))
12 breq1 4032 . . . 4 (𝑦 = 𝑋 → (𝑦 # 0 ↔ 𝑋 # 0))
13 breq2 4033 . . . 4 (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋))
1412, 13anbi12d 473 . . 3 (𝑦 = 𝑋 → ((𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)))
159, 11, 14elabd 2905 . 2 (𝜑 → ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))
16 seqeq1 10521 . . . . . 6 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
1716breq1d 4039 . . . . 5 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
1817anbi2d 464 . . . 4 (𝑛 = 𝑀 → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
1918exbidv 1836 . . 3 (𝑛 = 𝑀 → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
2019rspcev 2864 . 2 ((𝑀𝑍 ∧ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
215, 15, 20syl2anc 411 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  wrex 2473  Vcvv 2760   class class class wbr 4029  cfv 5254  0cc0 7872   · cmul 7877   # cap 8600  cz 9317  cuz 9592  seqcseq 10518  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-neg 8193  df-z 9318  df-uz 9593  df-seqfrec 10519  df-clim 11422
This theorem is referenced by:  zprodap0  11724
  Copyright terms: Public domain W3C validator