ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap0 GIF version

Theorem ntrivcvgap0 11350
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1 𝑍 = (ℤ𝑀)
ntrivcvgn0.2 (𝜑𝑀 ∈ ℤ)
ntrivcvgn0.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgap0.4 (𝜑𝑋 # 0)
Assertion
Ref Expression
ntrivcvgap0 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Distinct variable groups:   𝑛,𝐹,𝑦   𝑛,𝑀,𝑦   𝑦,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑛)   𝑋(𝑛)   𝑍(𝑦)

Proof of Theorem ntrivcvgap0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4 (𝜑𝑀 ∈ ℤ)
2 uzid 9364 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
4 ntrivcvgn0.1 . . 3 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2234 . 2 (𝜑𝑀𝑍)
6 ntrivcvgn0.3 . . . 4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
7 climrel 11081 . . . . 5 Rel ⇝
87brrelex2i 4591 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ V)
96, 8syl 14 . . 3 (𝜑𝑋 ∈ V)
10 ntrivcvgap0.4 . . . 4 (𝜑𝑋 # 0)
1110, 6jca 304 . . 3 (𝜑 → (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))
12 breq1 3940 . . . 4 (𝑦 = 𝑋 → (𝑦 # 0 ↔ 𝑋 # 0))
13 breq2 3941 . . . 4 (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋))
1412, 13anbi12d 465 . . 3 (𝑦 = 𝑋 → ((𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)))
159, 11, 14elabd 2833 . 2 (𝜑 → ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))
16 seqeq1 10252 . . . . . 6 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
1716breq1d 3947 . . . . 5 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
1817anbi2d 460 . . . 4 (𝑛 = 𝑀 → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
1918exbidv 1798 . . 3 (𝑛 = 𝑀 → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
2019rspcev 2793 . 2 ((𝑀𝑍 ∧ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
215, 15, 20syl2anc 409 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wex 1469  wcel 1481  wrex 2418  Vcvv 2689   class class class wbr 3937  cfv 5131  0cc0 7644   · cmul 7649   # cap 8367  cz 9078  cuz 9350  seqcseq 10249  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-pre-ltirr 7756
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-neg 7960  df-z 9079  df-uz 9351  df-seqfrec 10250  df-clim 11080
This theorem is referenced by:  zprodap0  11382
  Copyright terms: Public domain W3C validator