ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap0 GIF version

Theorem ntrivcvgap0 11731
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1 𝑍 = (ℤ𝑀)
ntrivcvgn0.2 (𝜑𝑀 ∈ ℤ)
ntrivcvgn0.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgap0.4 (𝜑𝑋 # 0)
Assertion
Ref Expression
ntrivcvgap0 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Distinct variable groups:   𝑛,𝐹,𝑦   𝑛,𝑀,𝑦   𝑦,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑛)   𝑋(𝑛)   𝑍(𝑦)

Proof of Theorem ntrivcvgap0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4 (𝜑𝑀 ∈ ℤ)
2 uzid 9632 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . . 3 (𝜑𝑀 ∈ (ℤ𝑀))
4 ntrivcvgn0.1 . . 3 𝑍 = (ℤ𝑀)
53, 4eleqtrrdi 2290 . 2 (𝜑𝑀𝑍)
6 ntrivcvgn0.3 . . . 4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
7 climrel 11462 . . . . 5 Rel ⇝
87brrelex2i 4708 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ V)
96, 8syl 14 . . 3 (𝜑𝑋 ∈ V)
10 ntrivcvgap0.4 . . . 4 (𝜑𝑋 # 0)
1110, 6jca 306 . . 3 (𝜑 → (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋))
12 breq1 4037 . . . 4 (𝑦 = 𝑋 → (𝑦 # 0 ↔ 𝑋 # 0))
13 breq2 4038 . . . 4 (𝑦 = 𝑋 → (seq𝑀( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑋))
1412, 13anbi12d 473 . . 3 (𝑦 = 𝑋 → ((𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦) ↔ (𝑋 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑋)))
159, 11, 14elabd 2909 . 2 (𝜑 → ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦))
16 seqeq1 10559 . . . . . 6 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
1716breq1d 4044 . . . . 5 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
1817anbi2d 464 . . . 4 (𝑛 = 𝑀 → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
1918exbidv 1839 . . 3 (𝑛 = 𝑀 → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)))
2019rspcev 2868 . 2 ((𝑀𝑍 ∧ ∃𝑦(𝑦 # 0 ∧ seq𝑀( · , 𝐹) ⇝ 𝑦)) → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
215, 15, 20syl2anc 411 1 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wrex 2476  Vcvv 2763   class class class wbr 4034  cfv 5259  0cc0 7896   · cmul 7901   # cap 8625  cz 9343  cuz 9618  seqcseq 10556  cli 11460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-neg 8217  df-z 9344  df-uz 9619  df-seqfrec 10557  df-clim 11461
This theorem is referenced by:  zprodap0  11763
  Copyright terms: Public domain W3C validator