Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomni GIF version

Theorem nninfomni 15509
Description: is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfomni ∈ Omni

Proof of Theorem nninfomni
Dummy variables 𝑎 𝑏 𝑖 𝑘 𝑛 𝑞 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2168 . . . . . . . . . . 11 (𝑐 = 𝑖 → (𝑐𝑏𝑖𝑏))
21ifbid 3578 . . . . . . . . . 10 (𝑐 = 𝑖 → if(𝑐𝑏, 1o, ∅) = if(𝑖𝑏, 1o, ∅))
32cbvmptv 4125 . . . . . . . . 9 (𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))
43fveq2i 5557 . . . . . . . 8 (𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅)))
54eqeq1i 2201 . . . . . . 7 ((𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o ↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o)
65ralbii 2500 . . . . . 6 (∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o)
7 ifbi 3577 . . . . . 6 ((∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o) → if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
86, 7ax-mp 5 . . . . 5 if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅)
98mpteq2i 4116 . . . 4 (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅)) = (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
10 elequ2 2169 . . . . . . . . . 10 (𝑘 = 𝑏 → (𝑖𝑘𝑖𝑏))
1110ifbid 3578 . . . . . . . . 9 (𝑘 = 𝑏 → if(𝑖𝑘, 1o, ∅) = if(𝑖𝑏, 1o, ∅))
1211mpteq2dv 4120 . . . . . . . 8 (𝑘 = 𝑏 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅)))
1312fveqeq2d 5562 . . . . . . 7 (𝑘 = 𝑏 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o))
1413cbvralv 2726 . . . . . 6 (∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o)
15 ifbi 3577 . . . . . 6 ((∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
1614, 15ax-mp 5 . . . . 5 if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅)
1716mpteq2i 4116 . . . 4 (𝑎 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
18 suceq 4433 . . . . . . 7 (𝑎 = 𝑛 → suc 𝑎 = suc 𝑛)
1918raleqdv 2696 . . . . . 6 (𝑎 = 𝑛 → (∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
2019ifbid 3578 . . . . 5 (𝑎 = 𝑛 → if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2120cbvmptv 4125 . . . 4 (𝑎 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
229, 17, 213eqtr2i 2220 . . 3 (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2322mpteq2i 4116 . 2 (𝑞 ∈ (2o𝑚) ↦ (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅))) = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
2423nninfomnilem 15508 1 ∈ Omni
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2164  wral 2472  c0 3446  ifcif 3557  cmpt 4090  suc csuc 4396  ωcom 4622  cfv 5254  (class class class)co 5918  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  xnninf 7178  Omnicomni 7193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179  df-omni 7194
This theorem is referenced by:  nnnninfen  15511  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator