| Step | Hyp | Ref
| Expression |
| 1 | | elequ1 2171 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑖 → (𝑐 ∈ 𝑏 ↔ 𝑖 ∈ 𝑏)) |
| 2 | 1 | ifbid 3582 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑖 → if(𝑐 ∈ 𝑏, 1o, ∅) = if(𝑖 ∈ 𝑏, 1o, ∅)) |
| 3 | 2 | cbvmptv 4129 |
. . . . . . . . 9
⊢ (𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅)) |
| 4 | 3 | fveq2i 5561 |
. . . . . . . 8
⊢ (𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) |
| 5 | 4 | eqeq1i 2204 |
. . . . . . 7
⊢ ((𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o
↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) =
1o) |
| 6 | 5 | ralbii 2503 |
. . . . . 6
⊢
(∀𝑏 ∈
suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o
↔ ∀𝑏 ∈ suc
𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) =
1o) |
| 7 | | ifbi 3581 |
. . . . . 6
⊢
((∀𝑏 ∈
suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o
↔ ∀𝑏 ∈ suc
𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o)
→ if(∀𝑏 ∈
suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅)) |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢
if(∀𝑏 ∈
suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅) |
| 9 | 8 | mpteq2i 4120 |
. . . 4
⊢ (𝑎 ∈ ω ↦
if(∀𝑏 ∈ suc
𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅)) = (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅)) |
| 10 | | elequ2 2172 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑏 → (𝑖 ∈ 𝑘 ↔ 𝑖 ∈ 𝑏)) |
| 11 | 10 | ifbid 3582 |
. . . . . . . . 9
⊢ (𝑘 = 𝑏 → if(𝑖 ∈ 𝑘, 1o, ∅) = if(𝑖 ∈ 𝑏, 1o, ∅)) |
| 12 | 11 | mpteq2dv 4124 |
. . . . . . . 8
⊢ (𝑘 = 𝑏 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) |
| 13 | 12 | fveqeq2d 5566 |
. . . . . . 7
⊢ (𝑘 = 𝑏 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) =
1o)) |
| 14 | 13 | cbvralv 2729 |
. . . . . 6
⊢
(∀𝑘 ∈
suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑏 ∈ suc
𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) =
1o) |
| 15 | | ifbi 3581 |
. . . . . 6
⊢
((∀𝑘 ∈
suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑏 ∈ suc
𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o)
→ if(∀𝑘 ∈
suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅)) |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
⊢
if(∀𝑘 ∈
suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅) |
| 17 | 16 | mpteq2i 4120 |
. . . 4
⊢ (𝑎 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) = (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅)) |
| 18 | | suceq 4437 |
. . . . . . 7
⊢ (𝑎 = 𝑛 → suc 𝑎 = suc 𝑛) |
| 19 | 18 | raleqdv 2699 |
. . . . . 6
⊢ (𝑎 = 𝑛 → (∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑘 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) =
1o)) |
| 20 | 19 | ifbid 3582 |
. . . . 5
⊢ (𝑎 = 𝑛 → if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) |
| 21 | 20 | cbvmptv 4129 |
. . . 4
⊢ (𝑎 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) |
| 22 | 9, 17, 21 | 3eqtr2i 2223 |
. . 3
⊢ (𝑎 ∈ ω ↦
if(∀𝑏 ∈ suc
𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) |
| 23 | 22 | mpteq2i 4120 |
. 2
⊢ (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑎 ∈ ω ↦
if(∀𝑏 ∈ suc
𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐 ∈ 𝑏, 1o, ∅))) = 1o,
1o, ∅))) = (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
| 24 | 23 | nninfomnilem 15662 |
1
⊢
ℕ∞ ∈ Omni |