Mathbox for Jim Kingdon < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfomni GIF version

Theorem nninfomni 13215
 Description: ℕ∞ is omniscient. Corollary 3.7 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfomni ∈ Omni

Proof of Theorem nninfomni
Dummy variables 𝑎 𝑏 𝑖 𝑘 𝑛 𝑞 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 1690 . . . . . . . . . . 11 (𝑐 = 𝑖 → (𝑐𝑏𝑖𝑏))
21ifbid 3493 . . . . . . . . . 10 (𝑐 = 𝑖 → if(𝑐𝑏, 1o, ∅) = if(𝑖𝑏, 1o, ∅))
32cbvmptv 4024 . . . . . . . . 9 (𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))
43fveq2i 5424 . . . . . . . 8 (𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅)))
54eqeq1i 2147 . . . . . . 7 ((𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o ↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o)
65ralbii 2441 . . . . . 6 (∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o)
7 ifbi 3492 . . . . . 6 ((∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o) → if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
86, 7ax-mp 5 . . . . 5 if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅)
98mpteq2i 4015 . . . 4 (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅)) = (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
10 elequ2 1691 . . . . . . . . . . 11 (𝑘 = 𝑏 → (𝑖𝑘𝑖𝑏))
1110ifbid 3493 . . . . . . . . . 10 (𝑘 = 𝑏 → if(𝑖𝑘, 1o, ∅) = if(𝑖𝑏, 1o, ∅))
1211mpteq2dv 4019 . . . . . . . . 9 (𝑘 = 𝑏 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅)))
1312fveq2d 5425 . . . . . . . 8 (𝑘 = 𝑏 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))))
1413eqeq1d 2148 . . . . . . 7 (𝑘 = 𝑏 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o))
1514cbvralv 2654 . . . . . 6 (∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o)
16 ifbi 3492 . . . . . 6 ((∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
1715, 16ax-mp 5 . . . . 5 if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅)
1817mpteq2i 4015 . . . 4 (𝑎 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑏, 1o, ∅))) = 1o, 1o, ∅))
19 suceq 4324 . . . . . . 7 (𝑎 = 𝑛 → suc 𝑎 = suc 𝑛)
2019raleqdv 2632 . . . . . 6 (𝑎 = 𝑛 → (∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o))
2120ifbid 3493 . . . . 5 (𝑎 = 𝑛 → if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2221cbvmptv 4024 . . . 4 (𝑎 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑎(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
239, 18, 223eqtr2i 2166 . . 3 (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))
2423mpteq2i 4015 . 2 (𝑞 ∈ (2o𝑚) ↦ (𝑎 ∈ ω ↦ if(∀𝑏 ∈ suc 𝑎(𝑞‘(𝑐 ∈ ω ↦ if(𝑐𝑏, 1o, ∅))) = 1o, 1o, ∅))) = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
2524nninfomnilem 13214 1 ∈ Omni
 Colors of variables: wff set class Syntax hints:   ↔ wb 104   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∅c0 3363  ifcif 3474   ↦ cmpt 3989  suc csuc 4287  ωcom 4504  ‘cfv 5123  (class class class)co 5774  1oc1o 6306  2oc2o 6307   ↑𝑚 cmap 6542  Omnicomni 7004  ℕ∞xnninf 7005 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-omni 7006  df-nninf 7007 This theorem is referenced by:  exmidsbthrlem  13217
 Copyright terms: Public domain W3C validator