Step | Hyp | Ref
| Expression |
1 | | nninfsel.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ω) |
2 | | elequ2 2141 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑖 ∈ 𝑥 ↔ 𝑖 ∈ 𝑦)) |
3 | 2 | ifbid 3541 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → if(𝑖 ∈ 𝑥, 1o, ∅) = if(𝑖 ∈ 𝑦, 1o, ∅)) |
4 | 3 | mpteq2dv 4073 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) |
5 | 4 | fveq2d 5490 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅)))) |
6 | 5 | eqeq1d 2174 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o)) |
7 | 6 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o)
↔ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o))) |
8 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑖 ∈ 𝑥 ↔ 𝑖 ∈ 𝑁)) |
9 | 8 | ifbid 3541 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → if(𝑖 ∈ 𝑥, 1o, ∅) = if(𝑖 ∈ 𝑁, 1o, ∅)) |
10 | 9 | mpteq2dv 4073 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
11 | 10 | fveq2d 5490 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o,
∅)))) |
12 | 11 | eqeq1d 2174 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o
↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) =
1o)) |
13 | 12 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o)
↔ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) =
1o))) |
14 | | 1n0 6400 |
. . . . . . 7
⊢
1o ≠ ∅ |
15 | 14 | neii 2338 |
. . . . . 6
⊢ ¬
1o = ∅ |
16 | | nninfsel.e |
. . . . . . . . . . . 12
⊢ 𝐸 = (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) |
17 | | elequ2 2141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑦 → (𝑖 ∈ 𝑘 ↔ 𝑖 ∈ 𝑦)) |
18 | 17 | ifbid 3541 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑦 → if(𝑖 ∈ 𝑘, 1o, ∅) = if(𝑖 ∈ 𝑦, 1o, ∅)) |
19 | 18 | mpteq2dv 4073 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) |
20 | 19 | fveq2d 5490 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑦 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅)))) |
21 | 20 | eqeq1d 2174 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑦 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o)) |
22 | 21 | cbvralv 2692 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑦 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o) |
23 | | elequ1 2140 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑎 → (𝑖 ∈ 𝑦 ↔ 𝑎 ∈ 𝑦)) |
24 | 23 | ifbid 3541 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑎 → if(𝑖 ∈ 𝑦, 1o, ∅) = if(𝑎 ∈ 𝑦, 1o, ∅)) |
25 | 24 | cbvmptv 4078 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅)) = (𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅)) |
26 | 25 | fveq2i 5489 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = (𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) |
27 | 26 | eqeq1i 2173 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o
↔ (𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) =
1o) |
28 | 27 | ralbii 2472 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o
↔ ∀𝑦 ∈ suc
𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) =
1o) |
29 | 22, 28 | bitri 183 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑦 ∈ suc
𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) =
1o) |
30 | | ifbi 3540 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑘 ∈
suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o
↔ ∀𝑦 ∈ suc
𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) = 1o)
→ if(∀𝑘 ∈
suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) = 1o,
1o, ∅)) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
if(∀𝑘 ∈
suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅) = if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) = 1o,
1o, ∅) |
32 | 31 | mpteq2i 4069 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) = 1o,
1o, ∅)) |
33 | 32 | mpteq2i 4069 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦
if(∀𝑘 ∈ suc
𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑘, 1o, ∅))) = 1o,
1o, ∅))) = (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦
if(∀𝑦 ∈ suc
𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) = 1o,
1o, ∅))) |
34 | 16, 33 | eqtri 2186 |
. . . . . . . . . . 11
⊢ 𝐸 = (𝑞 ∈ (2o
↑𝑚 ℕ∞) ↦ (𝑛 ∈ ω ↦
if(∀𝑦 ∈ suc
𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) = 1o,
1o, ∅))) |
35 | | nninfsel.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
36 | 35 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
37 | | nninfsel.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘(𝐸‘𝑄)) = 1o) |
38 | 37 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
(𝑄‘(𝐸‘𝑄)) = 1o) |
39 | | simpll 519 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → 𝑥 ∈
ω) |
40 | 39 | adantr 274 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
𝑥 ∈
ω) |
41 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → 𝜑) |
42 | | simplr 520 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → ∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o)) |
43 | | r19.21v 2543 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o)
↔ (𝜑 →
∀𝑦 ∈ 𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o)) |
44 | 42, 43 | sylib 121 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → (𝜑 → ∀𝑦 ∈ 𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o)) |
45 | 41, 44 | mpd 13 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → ∀𝑦 ∈ 𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) =
1o) |
46 | 25 | fveq2i 5489 |
. . . . . . . . . . . . . . 15
⊢ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = (𝑄‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) |
47 | 46 | eqeq1i 2173 |
. . . . . . . . . . . . . 14
⊢ ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o
↔ (𝑄‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) =
1o) |
48 | 47 | ralbii 2472 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o
↔ ∀𝑦 ∈
𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) =
1o) |
49 | 45, 48 | sylib 121 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → ∀𝑦 ∈ 𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) =
1o) |
50 | 49 | adantr 274 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
∀𝑦 ∈ 𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑦, 1o, ∅))) =
1o) |
51 | | elequ1 2140 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑎 → (𝑖 ∈ 𝑥 ↔ 𝑎 ∈ 𝑥)) |
52 | 51 | ifbid 3541 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑎 → if(𝑖 ∈ 𝑥, 1o, ∅) = if(𝑎 ∈ 𝑥, 1o, ∅)) |
53 | 52 | cbvmptv 4078 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅)) = (𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑥, 1o, ∅)) |
54 | 53 | fveq2i 5489 |
. . . . . . . . . . . 12
⊢ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = (𝑄‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑥, 1o, ∅))) |
55 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) =
∅) |
56 | 54, 55 | eqtr3id 2213 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
(𝑄‘(𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑥, 1o, ∅))) =
∅) |
57 | 34, 36, 38, 40, 50, 56 | nninfsellemeq 13894 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
(𝐸‘𝑄) = (𝑎 ∈ ω ↦ if(𝑎 ∈ 𝑥, 1o, ∅))) |
58 | 57, 53 | eqtr4di 2217 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
(𝐸‘𝑄) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) |
59 | 58 | fveq2d 5490 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
(𝑄‘(𝐸‘𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅)))) |
60 | 59, 38, 55 | 3eqtr3d 2206 |
. . . . . . 7
⊢ ((((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅) →
1o = ∅) |
61 | 60 | ex 114 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅ →
1o = ∅)) |
62 | 15, 61 | mtoi 654 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) =
∅) |
63 | 35 | adantl 275 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → 𝑄 ∈ (2o
↑𝑚 ℕ∞)) |
64 | | elmapi 6636 |
. . . . . . . . . 10
⊢ (𝑄 ∈ (2o
↑𝑚 ℕ∞) → 𝑄:ℕ∞⟶2o) |
65 | 63, 64 | syl 14 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → 𝑄:ℕ∞⟶2o) |
66 | | nnnninf 7090 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅)) ∈
ℕ∞) |
67 | 39, 66 | syl 14 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅)) ∈
ℕ∞) |
68 | 65, 67 | ffvelrnd 5621 |
. . . . . . . 8
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) ∈
2o) |
69 | | df2o3 6398 |
. . . . . . . 8
⊢
2o = {∅, 1o} |
70 | 68, 69 | eleqtrdi 2259 |
. . . . . . 7
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) ∈ {∅,
1o}) |
71 | | elpri 3599 |
. . . . . . 7
⊢ ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) ∈ {∅,
1o} → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅ ∨
(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) =
1o)) |
72 | 70, 71 | syl 14 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = ∅ ∨
(𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) =
1o)) |
73 | 72 | orcomd 719 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) = 1o
∨ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) =
∅)) |
74 | 62, 73 | ecased 1339 |
. . . 4
⊢ (((𝑥 ∈ ω ∧
∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o))
∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) =
1o) |
75 | 74 | exp31 362 |
. . 3
⊢ (𝑥 ∈ ω →
(∀𝑦 ∈ 𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑦, 1o, ∅))) = 1o)
→ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑥, 1o, ∅))) =
1o))) |
76 | 7, 13, 75 | omsinds 4599 |
. 2
⊢ (𝑁 ∈ ω → (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) =
1o)) |
77 | 1, 76 | mpcom 36 |
1
⊢ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) =
1o) |