Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemqall GIF version

Theorem nninfsellemqall 14420
Description: Lemma for nninfsel 14422. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
nninfsel.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
nninfsellemqall (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)
Distinct variable groups:   𝑖,𝑁   𝑄,𝑛,𝑞   𝑖,𝑛   𝜑,𝑛   𝑖,𝑘,𝑛   𝑘,𝑞
Allowed substitution hints:   𝜑(𝑖,𝑘,𝑞)   𝑄(𝑖,𝑘)   𝐸(𝑖,𝑘,𝑛,𝑞)   𝑁(𝑘,𝑛,𝑞)

Proof of Theorem nninfsellemqall
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.n . 2 (𝜑𝑁 ∈ ω)
2 elequ2 2153 . . . . . . . 8 (𝑥 = 𝑦 → (𝑖𝑥𝑖𝑦))
32ifbid 3555 . . . . . . 7 (𝑥 = 𝑦 → if(𝑖𝑥, 1o, ∅) = if(𝑖𝑦, 1o, ∅))
43mpteq2dv 4091 . . . . . 6 (𝑥 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅)))
54fveq2d 5515 . . . . 5 (𝑥 = 𝑦 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))))
65eqeq1d 2186 . . . 4 (𝑥 = 𝑦 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
76imbi2d 230 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o) ↔ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)))
8 eleq2 2241 . . . . . . . 8 (𝑥 = 𝑁 → (𝑖𝑥𝑖𝑁))
98ifbid 3555 . . . . . . 7 (𝑥 = 𝑁 → if(𝑖𝑥, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
109mpteq2dv 4091 . . . . . 6 (𝑥 = 𝑁 → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
1110fveq2d 5515 . . . . 5 (𝑥 = 𝑁 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))))
1211eqeq1d 2186 . . . 4 (𝑥 = 𝑁 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o))
1312imbi2d 230 . . 3 (𝑥 = 𝑁 → ((𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o) ↔ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)))
14 1n0 6427 . . . . . . 7 1o ≠ ∅
1514neii 2349 . . . . . 6 ¬ 1o = ∅
16 nninfsel.e . . . . . . . . . . . 12 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
17 elequ2 2153 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑦 → (𝑖𝑘𝑖𝑦))
1817ifbid 3555 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑦 → if(𝑖𝑘, 1o, ∅) = if(𝑖𝑦, 1o, ∅))
1918mpteq2dv 4091 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅)))
2019fveq2d 5515 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))))
2120eqeq1d 2186 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
2221cbvralv 2703 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)
23 elequ1 2152 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑎 → (𝑖𝑦𝑎𝑦))
2423ifbid 3555 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑎 → if(𝑖𝑦, 1o, ∅) = if(𝑎𝑦, 1o, ∅))
2524cbvmptv 4096 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅)) = (𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))
2625fveq2i 5514 . . . . . . . . . . . . . . . . . 18 (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = (𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅)))
2726eqeq1i 2185 . . . . . . . . . . . . . . . . 17 ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ (𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
2827ralbii 2483 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
2922, 28bitri 184 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
30 ifbi 3554 . . . . . . . . . . . . . . 15 ((∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅))
3129, 30ax-mp 5 . . . . . . . . . . . . . 14 if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅)
3231mpteq2i 4087 . . . . . . . . . . . . 13 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅))
3332mpteq2i 4087 . . . . . . . . . . . 12 (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))) = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅)))
3416, 33eqtri 2198 . . . . . . . . . . 11 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅)))
35 nninfsel.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (2o𝑚))
3635ad2antlr 489 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → 𝑄 ∈ (2o𝑚))
37 nninfsel.1 . . . . . . . . . . . 12 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
3837ad2antlr 489 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝐸𝑄)) = 1o)
39 simpll 527 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝑥 ∈ ω)
4039adantr 276 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → 𝑥 ∈ ω)
41 simpr 110 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝜑)
42 simplr 528 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
43 r19.21v 2554 . . . . . . . . . . . . . . 15 (∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o) ↔ (𝜑 → ∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
4442, 43sylib 122 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝜑 → ∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
4541, 44mpd 13 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)
4625fveq2i 5514 . . . . . . . . . . . . . . 15 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅)))
4746eqeq1i 2185 . . . . . . . . . . . . . 14 ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
4847ralbii 2483 . . . . . . . . . . . . 13 (∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ ∀𝑦𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
4945, 48sylib 122 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ∀𝑦𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
5049adantr 276 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → ∀𝑦𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
51 elequ1 2152 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎 → (𝑖𝑥𝑎𝑥))
5251ifbid 3555 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → if(𝑖𝑥, 1o, ∅) = if(𝑎𝑥, 1o, ∅))
5352cbvmptv 4096 . . . . . . . . . . . . 13 (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) = (𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅))
5453fveq2i 5514 . . . . . . . . . . . 12 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅)))
55 simpr 110 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅)
5654, 55eqtr3id 2224 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅))) = ∅)
5734, 36, 38, 40, 50, 56nninfsellemeq 14419 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝐸𝑄) = (𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅)))
5857, 53eqtr4di 2228 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)))
5958fveq2d 5515 . . . . . . . 8 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝐸𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))))
6059, 38, 553eqtr3d 2218 . . . . . . 7 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → 1o = ∅)
6160ex 115 . . . . . 6 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅ → 1o = ∅))
6215, 61mtoi 664 . . . . 5 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅)
6335adantl 277 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝑄 ∈ (2o𝑚))
64 elmapi 6664 . . . . . . . . . 10 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
6563, 64syl 14 . . . . . . . . 9 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝑄:ℕ⟶2o)
66 nnnninf 7118 . . . . . . . . . 10 (𝑥 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) ∈ ℕ)
6739, 66syl 14 . . . . . . . . 9 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) ∈ ℕ)
6865, 67ffvelcdmd 5648 . . . . . . . 8 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) ∈ 2o)
69 df2o3 6425 . . . . . . . 8 2o = {∅, 1o}
7068, 69eleqtrdi 2270 . . . . . . 7 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) ∈ {∅, 1o})
71 elpri 3614 . . . . . . 7 ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) ∈ {∅, 1o} → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅ ∨ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o))
7270, 71syl 14 . . . . . 6 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅ ∨ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o))
7372orcomd 729 . . . . 5 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o ∨ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅))
7462, 73ecased 1349 . . . 4 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)
7574exp31 364 . . 3 (𝑥 ∈ ω → (∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o) → (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)))
767, 13, 75omsinds 4618 . 2 (𝑁 ∈ ω → (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o))
771, 76mpcom 36 1 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wral 2455  c0 3422  ifcif 3534  {cpr 3592  cmpt 4061  suc csuc 4362  ωcom 4586  wf 5208  cfv 5212  (class class class)co 5869  1oc1o 6404  2oc2o 6405  𝑚 cmap 6642  xnninf 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113
This theorem is referenced by:  nninfsellemeqinf  14421  nninfsel  14422
  Copyright terms: Public domain W3C validator