Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemqall GIF version

Theorem nninfsellemqall 13895
Description: Lemma for nninfsel 13897. (Contributed by Jim Kingdon, 9-Aug-2022.)
Hypotheses
Ref Expression
nninfsel.e 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
nninfsel.q (𝜑𝑄 ∈ (2o𝑚))
nninfsel.1 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
nninfsel.n (𝜑𝑁 ∈ ω)
Assertion
Ref Expression
nninfsellemqall (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)
Distinct variable groups:   𝑖,𝑁   𝑄,𝑛,𝑞   𝑖,𝑛   𝜑,𝑛   𝑖,𝑘,𝑛   𝑘,𝑞
Allowed substitution hints:   𝜑(𝑖,𝑘,𝑞)   𝑄(𝑖,𝑘)   𝐸(𝑖,𝑘,𝑛,𝑞)   𝑁(𝑘,𝑛,𝑞)

Proof of Theorem nninfsellemqall
Dummy variables 𝑥 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.n . 2 (𝜑𝑁 ∈ ω)
2 elequ2 2141 . . . . . . . 8 (𝑥 = 𝑦 → (𝑖𝑥𝑖𝑦))
32ifbid 3541 . . . . . . 7 (𝑥 = 𝑦 → if(𝑖𝑥, 1o, ∅) = if(𝑖𝑦, 1o, ∅))
43mpteq2dv 4073 . . . . . 6 (𝑥 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅)))
54fveq2d 5490 . . . . 5 (𝑥 = 𝑦 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))))
65eqeq1d 2174 . . . 4 (𝑥 = 𝑦 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
76imbi2d 229 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o) ↔ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)))
8 eleq2 2230 . . . . . . . 8 (𝑥 = 𝑁 → (𝑖𝑥𝑖𝑁))
98ifbid 3541 . . . . . . 7 (𝑥 = 𝑁 → if(𝑖𝑥, 1o, ∅) = if(𝑖𝑁, 1o, ∅))
109mpteq2dv 4073 . . . . . 6 (𝑥 = 𝑁 → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)))
1110fveq2d 5490 . . . . 5 (𝑥 = 𝑁 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))))
1211eqeq1d 2174 . . . 4 (𝑥 = 𝑁 → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o ↔ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o))
1312imbi2d 229 . . 3 (𝑥 = 𝑁 → ((𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o) ↔ (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)))
14 1n0 6400 . . . . . . 7 1o ≠ ∅
1514neii 2338 . . . . . 6 ¬ 1o = ∅
16 nninfsel.e . . . . . . . . . . . 12 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)))
17 elequ2 2141 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑦 → (𝑖𝑘𝑖𝑦))
1817ifbid 3541 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑦 → if(𝑖𝑘, 1o, ∅) = if(𝑖𝑦, 1o, ∅))
1918mpteq2dv 4073 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅)))
2019fveq2d 5490 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))))
2120eqeq1d 2174 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
2221cbvralv 2692 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)
23 elequ1 2140 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑎 → (𝑖𝑦𝑎𝑦))
2423ifbid 3541 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑎 → if(𝑖𝑦, 1o, ∅) = if(𝑎𝑦, 1o, ∅))
2524cbvmptv 4078 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅)) = (𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))
2625fveq2i 5489 . . . . . . . . . . . . . . . . . 18 (𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = (𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅)))
2726eqeq1i 2173 . . . . . . . . . . . . . . . . 17 ((𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ (𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
2827ralbii 2472 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
2922, 28bitri 183 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
30 ifbi 3540 . . . . . . . . . . . . . . 15 ((∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o ↔ ∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o) → if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅))
3129, 30ax-mp 5 . . . . . . . . . . . . . 14 if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅) = if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅)
3231mpteq2i 4069 . . . . . . . . . . . . 13 (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅)) = (𝑛 ∈ ω ↦ if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅))
3332mpteq2i 4069 . . . . . . . . . . . 12 (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑘 ∈ suc 𝑛(𝑞‘(𝑖 ∈ ω ↦ if(𝑖𝑘, 1o, ∅))) = 1o, 1o, ∅))) = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅)))
3416, 33eqtri 2186 . . . . . . . . . . 11 𝐸 = (𝑞 ∈ (2o𝑚) ↦ (𝑛 ∈ ω ↦ if(∀𝑦 ∈ suc 𝑛(𝑞‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o, 1o, ∅)))
35 nninfsel.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (2o𝑚))
3635ad2antlr 481 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → 𝑄 ∈ (2o𝑚))
37 nninfsel.1 . . . . . . . . . . . 12 (𝜑 → (𝑄‘(𝐸𝑄)) = 1o)
3837ad2antlr 481 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝐸𝑄)) = 1o)
39 simpll 519 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝑥 ∈ ω)
4039adantr 274 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → 𝑥 ∈ ω)
41 simpr 109 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝜑)
42 simplr 520 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
43 r19.21v 2543 . . . . . . . . . . . . . . 15 (∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o) ↔ (𝜑 → ∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
4442, 43sylib 121 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝜑 → ∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o))
4541, 44mpd 13 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)
4625fveq2i 5489 . . . . . . . . . . . . . . 15 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅)))
4746eqeq1i 2173 . . . . . . . . . . . . . 14 ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
4847ralbii 2472 . . . . . . . . . . . . 13 (∀𝑦𝑥 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o ↔ ∀𝑦𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
4945, 48sylib 121 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ∀𝑦𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
5049adantr 274 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → ∀𝑦𝑥 (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑦, 1o, ∅))) = 1o)
51 elequ1 2140 . . . . . . . . . . . . . . 15 (𝑖 = 𝑎 → (𝑖𝑥𝑎𝑥))
5251ifbid 3541 . . . . . . . . . . . . . 14 (𝑖 = 𝑎 → if(𝑖𝑥, 1o, ∅) = if(𝑎𝑥, 1o, ∅))
5352cbvmptv 4078 . . . . . . . . . . . . 13 (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) = (𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅))
5453fveq2i 5489 . . . . . . . . . . . 12 (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅)))
55 simpr 109 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅)
5654, 55eqtr3id 2213 . . . . . . . . . . 11 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅))) = ∅)
5734, 36, 38, 40, 50, 56nninfsellemeq 13894 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝐸𝑄) = (𝑎 ∈ ω ↦ if(𝑎𝑥, 1o, ∅)))
5857, 53eqtr4di 2217 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝐸𝑄) = (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)))
5958fveq2d 5490 . . . . . . . 8 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → (𝑄‘(𝐸𝑄)) = (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))))
6059, 38, 553eqtr3d 2206 . . . . . . 7 ((((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) ∧ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅) → 1o = ∅)
6160ex 114 . . . . . 6 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅ → 1o = ∅))
6215, 61mtoi 654 . . . . 5 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ¬ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅)
6335adantl 275 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝑄 ∈ (2o𝑚))
64 elmapi 6636 . . . . . . . . . 10 (𝑄 ∈ (2o𝑚) → 𝑄:ℕ⟶2o)
6563, 64syl 14 . . . . . . . . 9 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → 𝑄:ℕ⟶2o)
66 nnnninf 7090 . . . . . . . . . 10 (𝑥 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) ∈ ℕ)
6739, 66syl 14 . . . . . . . . 9 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅)) ∈ ℕ)
6865, 67ffvelrnd 5621 . . . . . . . 8 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) ∈ 2o)
69 df2o3 6398 . . . . . . . 8 2o = {∅, 1o}
7068, 69eleqtrdi 2259 . . . . . . 7 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) ∈ {∅, 1o})
71 elpri 3599 . . . . . . 7 ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) ∈ {∅, 1o} → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅ ∨ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o))
7270, 71syl 14 . . . . . 6 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅ ∨ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o))
7372orcomd 719 . . . . 5 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → ((𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o ∨ (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = ∅))
7462, 73ecased 1339 . . . 4 (((𝑥 ∈ ω ∧ ∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o)) ∧ 𝜑) → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)
7574exp31 362 . . 3 (𝑥 ∈ ω → (∀𝑦𝑥 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑦, 1o, ∅))) = 1o) → (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑥, 1o, ∅))) = 1o)))
767, 13, 75omsinds 4599 . 2 (𝑁 ∈ ω → (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o))
771, 76mpcom 36 1 (𝜑 → (𝑄‘(𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))) = 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wral 2444  c0 3409  ifcif 3520  {cpr 3577  cmpt 4043  suc csuc 4343  ωcom 4567  wf 5184  cfv 5188  (class class class)co 5842  1oc1o 6377  2oc2o 6378  𝑚 cmap 6614  xnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by:  nninfsellemeqinf  13896  nninfsel  13897
  Copyright terms: Public domain W3C validator