Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mss | GIF version |
Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.) |
Ref | Expression |
---|---|
mss | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | snss 3709 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
3 | 1 | snm 3703 | . . . . 5 ⊢ ∃𝑤 𝑤 ∈ {𝑦} |
4 | 1 | snex 4171 | . . . . . 6 ⊢ {𝑦} ∈ V |
5 | sseq1 3170 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
6 | eleq2 2234 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ {𝑦})) | |
7 | 6 | exbidv 1818 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (∃𝑤 𝑤 ∈ 𝑥 ↔ ∃𝑤 𝑤 ∈ {𝑦})) |
8 | 5, 7 | anbi12d 470 | . . . . . 6 ⊢ (𝑥 = {𝑦} → ((𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥) ↔ ({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦}))) |
9 | 4, 8 | spcev 2825 | . . . . 5 ⊢ (({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦}) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
10 | 3, 9 | mpan2 423 | . . . 4 ⊢ ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
11 | 2, 10 | sylbi 120 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
12 | 11 | exlimiv 1591 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
13 | elequ1 2145 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑤 ∈ 𝑥)) | |
14 | 13 | cbvexv 1911 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ 𝑥 ↔ ∃𝑤 𝑤 ∈ 𝑥) |
15 | 14 | anbi2i 454 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥) ↔ (𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
16 | 15 | exbii 1598 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥) ↔ ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ 𝑥)) |
17 | 12, 16 | sylibr 133 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ ∃𝑧 𝑧 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ⊆ wss 3121 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |