ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mss GIF version

Theorem mss 4220
Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
mss (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧   𝑥,𝐴,𝑦
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem mss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . 5 𝑦 ∈ V
21snss 3724 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
31snm 3709 . . . . 5 𝑤 𝑤 ∈ {𝑦}
41snex 4180 . . . . . 6 {𝑦} ∈ V
5 sseq1 3176 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
6 eleq2 2239 . . . . . . . 8 (𝑥 = {𝑦} → (𝑤𝑥𝑤 ∈ {𝑦}))
76exbidv 1823 . . . . . . 7 (𝑥 = {𝑦} → (∃𝑤 𝑤𝑥 ↔ ∃𝑤 𝑤 ∈ {𝑦}))
85, 7anbi12d 473 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴 ∧ ∃𝑤 𝑤𝑥) ↔ ({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦})))
94, 8spcev 2830 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦}) → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
103, 9mpan2 425 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
112, 10sylbi 121 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1211exlimiv 1596 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
13 elequ1 2150 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑥𝑤𝑥))
1413cbvexv 1916 . . . 4 (∃𝑧 𝑧𝑥 ↔ ∃𝑤 𝑤𝑥)
1514anbi2i 457 . . 3 ((𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) ↔ (𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1615exbii 1603 . 2 (∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1712, 16sylibr 134 1 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wex 1490  wcel 2146  wss 3127  {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator