ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mss GIF version

Theorem mss 4259
Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
mss (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧   𝑥,𝐴,𝑦
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem mss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . 5 𝑦 ∈ V
21snss 3757 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
31snm 3742 . . . . 5 𝑤 𝑤 ∈ {𝑦}
41snex 4218 . . . . . 6 {𝑦} ∈ V
5 sseq1 3206 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
6 eleq2 2260 . . . . . . . 8 (𝑥 = {𝑦} → (𝑤𝑥𝑤 ∈ {𝑦}))
76exbidv 1839 . . . . . . 7 (𝑥 = {𝑦} → (∃𝑤 𝑤𝑥 ↔ ∃𝑤 𝑤 ∈ {𝑦}))
85, 7anbi12d 473 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴 ∧ ∃𝑤 𝑤𝑥) ↔ ({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦})))
94, 8spcev 2859 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦}) → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
103, 9mpan2 425 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
112, 10sylbi 121 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1211exlimiv 1612 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
13 elequ1 2171 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑥𝑤𝑥))
1413cbvexv 1933 . . . 4 (∃𝑧 𝑧𝑥 ↔ ∃𝑤 𝑤𝑥)
1514anbi2i 457 . . 3 ((𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) ↔ (𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1615exbii 1619 . 2 (∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1712, 16sylibr 134 1 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wss 3157  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator