ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mss GIF version

Theorem mss 4211
Description: An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
Assertion
Ref Expression
mss (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧   𝑥,𝐴,𝑦
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem mss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑦 ∈ V
21snss 3709 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
31snm 3703 . . . . 5 𝑤 𝑤 ∈ {𝑦}
41snex 4171 . . . . . 6 {𝑦} ∈ V
5 sseq1 3170 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
6 eleq2 2234 . . . . . . . 8 (𝑥 = {𝑦} → (𝑤𝑥𝑤 ∈ {𝑦}))
76exbidv 1818 . . . . . . 7 (𝑥 = {𝑦} → (∃𝑤 𝑤𝑥 ↔ ∃𝑤 𝑤 ∈ {𝑦}))
85, 7anbi12d 470 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴 ∧ ∃𝑤 𝑤𝑥) ↔ ({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦})))
94, 8spcev 2825 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ ∃𝑤 𝑤 ∈ {𝑦}) → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
103, 9mpan2 423 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
112, 10sylbi 120 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1211exlimiv 1591 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
13 elequ1 2145 . . . . 5 (𝑧 = 𝑤 → (𝑧𝑥𝑤𝑥))
1413cbvexv 1911 . . . 4 (∃𝑧 𝑧𝑥 ↔ ∃𝑤 𝑤𝑥)
1514anbi2i 454 . . 3 ((𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) ↔ (𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1615exbii 1598 . 2 (∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑤 𝑤𝑥))
1712, 16sylibr 133 1 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴 ∧ ∃𝑧 𝑧𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wss 3121  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator