![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucid | GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 4418 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2739 suc csuc 4367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-suc 4373 |
This theorem is referenced by: eqelsuc 4421 unon 4512 ordunisuc2r 4515 ordsoexmid 4563 limom 4615 0elnn 4620 tfrexlem 6337 tfri1dALT 6354 tfrcl 6367 frecabcl 6402 phplem4 6857 fiintim 6930 fidcenumlemr 6956 nninfwlpoimlemginf 7176 pw1ne3 7231 sucpw1ne3 7233 sucpw1nel3 7234 prarloclemarch2 7420 prarloclemlt 7494 ennnfonelemex 12417 ennnfonelemrn 12422 bj-nn0suc0 14787 bj-nnelirr 14790 bj-inf2vnlem2 14808 bj-findis 14816 nninfsellemeq 14848 |
Copyright terms: Public domain | W3C validator |