![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucid | GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 4448 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-suc 4403 |
This theorem is referenced by: eqelsuc 4451 unon 4544 ordunisuc2r 4547 ordsoexmid 4595 limom 4647 0elnn 4652 tfrexlem 6389 tfri1dALT 6406 tfrcl 6419 frecabcl 6454 phplem4 6913 fiintim 6987 fidcenumlemr 7016 nninfwlpoimlemginf 7237 pw1ne3 7292 sucpw1ne3 7294 sucpw1nel3 7295 prarloclemarch2 7481 prarloclemlt 7555 ennnfonelemex 12574 ennnfonelemrn 12579 bj-nn0suc0 15512 bj-nnelirr 15515 bj-inf2vnlem2 15533 bj-findis 15541 nninfsellemeq 15574 |
Copyright terms: Public domain | W3C validator |