| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 4468 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 suc csuc 4417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-sn 3641 df-suc 4423 |
| This theorem is referenced by: eqelsuc 4471 unon 4564 ordunisuc2r 4567 ordsoexmid 4615 limom 4667 0elnn 4672 tfrexlem 6430 tfri1dALT 6447 tfrcl 6460 frecabcl 6495 phplem4 6964 fiintim 7040 fidcenumlemr 7069 nninfwlpoimlemginf 7290 pw1ne3 7355 sucpw1ne3 7357 sucpw1nel3 7358 prarloclemarch2 7545 prarloclemlt 7619 ennnfonelemex 12835 ennnfonelemrn 12840 bj-nn0suc0 16000 bj-nnelirr 16003 bj-inf2vnlem2 16021 bj-findis 16029 nninfsellemeq 16066 |
| Copyright terms: Public domain | W3C validator |