Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucid | GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 4394 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-suc 4349 |
This theorem is referenced by: eqelsuc 4397 unon 4488 ordunisuc2r 4491 ordsoexmid 4539 limom 4591 0elnn 4596 tfrexlem 6302 tfri1dALT 6319 tfrcl 6332 frecabcl 6367 phplem4 6821 fiintim 6894 fidcenumlemr 6920 pw1ne3 7186 sucpw1ne3 7188 sucpw1nel3 7189 prarloclemarch2 7360 prarloclemlt 7434 ennnfonelemex 12347 ennnfonelemrn 12352 bj-nn0suc0 13832 bj-nnelirr 13835 bj-inf2vnlem2 13853 bj-findis 13861 nninfsellemeq 13894 |
Copyright terms: Public domain | W3C validator |