| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 4504 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 suc csuc 4453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-suc 4459 |
| This theorem is referenced by: eqelsuc 4507 unon 4600 ordunisuc2r 4603 ordsoexmid 4651 limom 4703 0elnn 4708 tfrexlem 6470 tfri1dALT 6487 tfrcl 6500 frecabcl 6535 phplem4 7004 fiintim 7081 fidcenumlemr 7110 nninfwlpoimlemginf 7331 pw1ne3 7403 sucpw1ne3 7405 sucpw1nel3 7406 prarloclemarch2 7594 prarloclemlt 7668 ennnfonelemex 12971 ennnfonelemrn 12976 bj-nn0suc0 16243 bj-nnelirr 16246 bj-inf2vnlem2 16264 bj-findis 16272 nninfsellemeq 16311 |
| Copyright terms: Public domain | W3C validator |