| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 4451 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 suc csuc 4400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-suc 4406 |
| This theorem is referenced by: eqelsuc 4454 unon 4547 ordunisuc2r 4550 ordsoexmid 4598 limom 4650 0elnn 4655 tfrexlem 6392 tfri1dALT 6409 tfrcl 6422 frecabcl 6457 phplem4 6916 fiintim 6992 fidcenumlemr 7021 nninfwlpoimlemginf 7242 pw1ne3 7297 sucpw1ne3 7299 sucpw1nel3 7300 prarloclemarch2 7486 prarloclemlt 7560 ennnfonelemex 12631 ennnfonelemrn 12636 bj-nn0suc0 15596 bj-nnelirr 15599 bj-inf2vnlem2 15617 bj-findis 15625 nninfsellemeq 15658 |
| Copyright terms: Public domain | W3C validator |