![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sucid | GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 4417 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2738 suc csuc 4366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-sn 3599 df-suc 4372 |
This theorem is referenced by: eqelsuc 4420 unon 4511 ordunisuc2r 4514 ordsoexmid 4562 limom 4614 0elnn 4619 tfrexlem 6335 tfri1dALT 6352 tfrcl 6365 frecabcl 6400 phplem4 6855 fiintim 6928 fidcenumlemr 6954 nninfwlpoimlemginf 7174 pw1ne3 7229 sucpw1ne3 7231 sucpw1nel3 7232 prarloclemarch2 7418 prarloclemlt 7492 ennnfonelemex 12415 ennnfonelemrn 12420 bj-nn0suc0 14705 bj-nnelirr 14708 bj-inf2vnlem2 14726 bj-findis 14734 nninfsellemeq 14766 |
Copyright terms: Public domain | W3C validator |