| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucid | GIF version | ||
| Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
| Ref | Expression |
|---|---|
| sucid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucid | ⊢ 𝐴 ∈ suc 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucidg 4507 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 suc csuc 4456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-suc 4462 |
| This theorem is referenced by: eqelsuc 4510 unon 4603 ordunisuc2r 4606 ordsoexmid 4654 limom 4706 0elnn 4711 tfrexlem 6486 tfri1dALT 6503 tfrcl 6516 frecabcl 6551 phplem4 7024 fiintim 7101 fidcenumlemr 7130 nninfwlpoimlemginf 7351 pw1ne3 7423 sucpw1ne3 7425 sucpw1nel3 7426 prarloclemarch2 7614 prarloclemlt 7688 ennnfonelemex 12993 ennnfonelemrn 12998 bj-nn0suc0 16337 bj-nnelirr 16340 bj-inf2vnlem2 16358 bj-findis 16366 3dom 16381 nninfsellemeq 16410 |
| Copyright terms: Public domain | W3C validator |