Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucid | GIF version |
Description: A set belongs to its successor. (Contributed by NM, 22-Jun-1994.) (Proof shortened by Alan Sare, 18-Feb-2012.) (Proof shortened by Scott Fenton, 20-Feb-2012.) |
Ref | Expression |
---|---|
sucid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucid | ⊢ 𝐴 ∈ suc 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucidg 4376 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ suc 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 Vcvv 2712 suc csuc 4325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-suc 4331 |
This theorem is referenced by: eqelsuc 4379 unon 4470 ordunisuc2r 4473 ordsoexmid 4521 limom 4573 0elnn 4578 tfrexlem 6281 tfri1dALT 6298 tfrcl 6311 frecabcl 6346 phplem4 6800 fiintim 6873 fidcenumlemr 6899 pw1ne3 7165 sucpw1ne3 7167 sucpw1nel3 7168 prarloclemarch2 7339 prarloclemlt 7413 ennnfonelemex 12154 ennnfonelemrn 12159 bj-nn0suc0 13536 bj-nnelirr 13539 bj-inf2vnlem2 13557 bj-findis 13565 nninfsellemeq 13597 |
Copyright terms: Public domain | W3C validator |