| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suceq | GIF version | ||
| Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | sneq 3643 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | uneq12d 3327 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
| 4 | df-suc 4417 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | df-suc 4417 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 6 | 3, 4, 5 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∪ cun 3163 {csn 3632 suc csuc 4411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-suc 4417 |
| This theorem is referenced by: eqelsuc 4465 2ordpr 4571 onsucsssucexmid 4574 onsucelsucexmid 4577 ordsucunielexmid 4578 suc11g 4604 onsucuni2 4611 0elsucexmid 4612 ordpwsucexmid 4617 peano2 4642 findes 4650 nn0suc 4651 0elnn 4666 omsinds 4669 tfr1onlemsucaccv 6426 tfrcllemsucaccv 6439 tfrcl 6449 frecabcl 6484 frecsuc 6492 sucinc 6530 sucinc2 6531 oacl 6545 oav2 6548 oasuc 6549 oa1suc 6552 nna0r 6563 nnacom 6569 nnaass 6570 nnmsucr 6573 nnsucelsuc 6576 nnsucsssuc 6577 nnaword 6596 nnaordex 6613 phplem3g 6952 nneneq 6953 php5 6954 php5dom 6959 omp1eomlem 7195 omp1eom 7196 nninfninc 7224 nnnninfeq 7229 nnnninfeq2 7230 nninfwlpoimlemg 7276 nninfwlpoimlemginf 7277 nninfwlpoim 7280 nninfinfwlpo 7281 indpi 7454 ennnfoneleminc 12753 ennnfonelemex 12756 bj-indsuc 15826 bj-bdfindes 15847 bj-nn0suc0 15848 bj-peano4 15853 bj-inf2vnlem1 15868 bj-nn0sucALT 15876 bj-findes 15879 nnsf 15904 nninfsellemdc 15909 nninfself 15912 nninfsellemeqinf 15915 nninfomni 15918 |
| Copyright terms: Public domain | W3C validator |