Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suceq | GIF version |
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | sneq 3587 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | uneq12d 3277 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
4 | df-suc 4349 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | df-suc 4349 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
6 | 3, 4, 5 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∪ cun 3114 {csn 3576 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-suc 4349 |
This theorem is referenced by: eqelsuc 4397 2ordpr 4501 onsucsssucexmid 4504 onsucelsucexmid 4507 ordsucunielexmid 4508 suc11g 4534 onsucuni2 4541 0elsucexmid 4542 ordpwsucexmid 4547 peano2 4572 findes 4580 nn0suc 4581 0elnn 4596 omsinds 4599 tfr1onlemsucaccv 6309 tfrcllemsucaccv 6322 tfrcl 6332 frecabcl 6367 frecsuc 6375 sucinc 6413 sucinc2 6414 oacl 6428 oav2 6431 oasuc 6432 oa1suc 6435 nna0r 6446 nnacom 6452 nnaass 6453 nnmsucr 6456 nnsucelsuc 6459 nnsucsssuc 6460 nnaword 6479 nnaordex 6495 phplem3g 6822 nneneq 6823 php5 6824 php5dom 6829 omp1eomlem 7059 omp1eom 7060 nnnninfeq 7092 nnnninfeq2 7093 indpi 7283 ennnfoneleminc 12344 ennnfonelemex 12347 bj-indsuc 13810 bj-bdfindes 13831 bj-nn0suc0 13832 bj-peano4 13837 bj-inf2vnlem1 13852 bj-nn0sucALT 13860 bj-findes 13863 nnsf 13885 nninfsellemdc 13890 nninfself 13893 nninfsellemeqinf 13896 nninfomni 13899 |
Copyright terms: Public domain | W3C validator |