| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suceq | GIF version | ||
| Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | sneq 3677 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | uneq12d 3359 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
| 4 | df-suc 4461 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | df-suc 4461 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 6 | 3, 4, 5 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 {csn 3666 suc csuc 4455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-suc 4461 |
| This theorem is referenced by: eqelsuc 4509 2ordpr 4615 onsucsssucexmid 4618 onsucelsucexmid 4621 ordsucunielexmid 4622 suc11g 4648 onsucuni2 4655 0elsucexmid 4656 ordpwsucexmid 4661 peano2 4686 findes 4694 nn0suc 4695 0elnn 4710 omsinds 4713 tfr1onlemsucaccv 6485 tfrcllemsucaccv 6498 tfrcl 6508 frecabcl 6543 frecsuc 6551 sucinc 6589 sucinc2 6590 oacl 6604 oav2 6607 oasuc 6608 oa1suc 6611 nna0r 6622 nnacom 6628 nnaass 6629 nnmsucr 6632 nnsucelsuc 6635 nnsucsssuc 6636 nnaword 6655 nnaordex 6672 phplem3g 7013 nneneq 7014 php5 7015 php5dom 7020 omp1eomlem 7257 omp1eom 7258 nninfninc 7286 nnnninfeq 7291 nnnninfeq2 7292 nninfwlpoimlemg 7338 nninfwlpoimlemginf 7339 nninfwlpoim 7342 nninfinfwlpo 7343 indpi 7525 ennnfoneleminc 12977 ennnfonelemex 12980 bj-indsuc 16249 bj-bdfindes 16270 bj-nn0suc0 16271 bj-peano4 16276 bj-inf2vnlem1 16291 bj-nn0sucALT 16299 bj-findes 16302 nnsf 16330 nninfsellemdc 16335 nninfself 16338 nninfsellemeqinf 16341 nninfomni 16344 |
| Copyright terms: Public domain | W3C validator |