![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suceq | GIF version |
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | sneq 3604 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | uneq12d 3291 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
4 | df-suc 4372 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | df-suc 4372 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
6 | 3, 4, 5 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3128 {csn 3593 suc csuc 4366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-sn 3599 df-suc 4372 |
This theorem is referenced by: eqelsuc 4420 2ordpr 4524 onsucsssucexmid 4527 onsucelsucexmid 4530 ordsucunielexmid 4531 suc11g 4557 onsucuni2 4564 0elsucexmid 4565 ordpwsucexmid 4570 peano2 4595 findes 4603 nn0suc 4604 0elnn 4619 omsinds 4622 tfr1onlemsucaccv 6342 tfrcllemsucaccv 6355 tfrcl 6365 frecabcl 6400 frecsuc 6408 sucinc 6446 sucinc2 6447 oacl 6461 oav2 6464 oasuc 6465 oa1suc 6468 nna0r 6479 nnacom 6485 nnaass 6486 nnmsucr 6489 nnsucelsuc 6492 nnsucsssuc 6493 nnaword 6512 nnaordex 6529 phplem3g 6856 nneneq 6857 php5 6858 php5dom 6863 omp1eomlem 7093 omp1eom 7094 nnnninfeq 7126 nnnninfeq2 7127 nninfwlpoimlemg 7173 nninfwlpoimlemginf 7174 nninfwlpoim 7176 indpi 7341 ennnfoneleminc 12412 ennnfonelemex 12415 bj-indsuc 14683 bj-bdfindes 14704 bj-nn0suc0 14705 bj-peano4 14710 bj-inf2vnlem1 14725 bj-nn0sucALT 14733 bj-findes 14736 nnsf 14757 nninfsellemdc 14762 nninfself 14765 nninfsellemeqinf 14768 nninfomni 14771 |
Copyright terms: Public domain | W3C validator |