![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suceq | GIF version |
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | sneq 3630 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | uneq12d 3315 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
4 | df-suc 4403 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | df-suc 4403 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
6 | 3, 4, 5 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∪ cun 3152 {csn 3619 suc csuc 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-suc 4403 |
This theorem is referenced by: eqelsuc 4451 2ordpr 4557 onsucsssucexmid 4560 onsucelsucexmid 4563 ordsucunielexmid 4564 suc11g 4590 onsucuni2 4597 0elsucexmid 4598 ordpwsucexmid 4603 peano2 4628 findes 4636 nn0suc 4637 0elnn 4652 omsinds 4655 tfr1onlemsucaccv 6396 tfrcllemsucaccv 6409 tfrcl 6419 frecabcl 6454 frecsuc 6462 sucinc 6500 sucinc2 6501 oacl 6515 oav2 6518 oasuc 6519 oa1suc 6522 nna0r 6533 nnacom 6539 nnaass 6540 nnmsucr 6543 nnsucelsuc 6546 nnsucsssuc 6547 nnaword 6566 nnaordex 6583 phplem3g 6914 nneneq 6915 php5 6916 php5dom 6921 omp1eomlem 7155 omp1eom 7156 nninfninc 7184 nnnninfeq 7189 nnnninfeq2 7190 nninfwlpoimlemg 7236 nninfwlpoimlemginf 7237 nninfwlpoim 7239 indpi 7404 ennnfoneleminc 12571 ennnfonelemex 12574 bj-indsuc 15490 bj-bdfindes 15511 bj-nn0suc0 15512 bj-peano4 15517 bj-inf2vnlem1 15532 bj-nn0sucALT 15540 bj-findes 15543 nnsf 15565 nninfsellemdc 15570 nninfself 15573 nninfsellemeqinf 15576 nninfomni 15579 |
Copyright terms: Public domain | W3C validator |