![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suceq | GIF version |
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | sneq 3629 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | uneq12d 3314 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
4 | df-suc 4402 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | df-suc 4402 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
6 | 3, 4, 5 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∪ cun 3151 {csn 3618 suc csuc 4396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-suc 4402 |
This theorem is referenced by: eqelsuc 4450 2ordpr 4556 onsucsssucexmid 4559 onsucelsucexmid 4562 ordsucunielexmid 4563 suc11g 4589 onsucuni2 4596 0elsucexmid 4597 ordpwsucexmid 4602 peano2 4627 findes 4635 nn0suc 4636 0elnn 4651 omsinds 4654 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 tfrcl 6417 frecabcl 6452 frecsuc 6460 sucinc 6498 sucinc2 6499 oacl 6513 oav2 6516 oasuc 6517 oa1suc 6520 nna0r 6531 nnacom 6537 nnaass 6538 nnmsucr 6541 nnsucelsuc 6544 nnsucsssuc 6545 nnaword 6564 nnaordex 6581 phplem3g 6912 nneneq 6913 php5 6914 php5dom 6919 omp1eomlem 7153 omp1eom 7154 nninfninc 7182 nnnninfeq 7187 nnnninfeq2 7188 nninfwlpoimlemg 7234 nninfwlpoimlemginf 7235 nninfwlpoim 7237 indpi 7402 ennnfoneleminc 12568 ennnfonelemex 12571 bj-indsuc 15420 bj-bdfindes 15441 bj-nn0suc0 15442 bj-peano4 15447 bj-inf2vnlem1 15462 bj-nn0sucALT 15470 bj-findes 15473 nnsf 15495 nninfsellemdc 15500 nninfself 15503 nninfsellemeqinf 15506 nninfomni 15509 |
Copyright terms: Public domain | W3C validator |