| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suceq | GIF version | ||
| Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | sneq 3634 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | uneq12d 3319 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
| 4 | df-suc 4407 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | df-suc 4407 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 6 | 3, 4, 5 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∪ cun 3155 {csn 3623 suc csuc 4401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-suc 4407 |
| This theorem is referenced by: eqelsuc 4455 2ordpr 4561 onsucsssucexmid 4564 onsucelsucexmid 4567 ordsucunielexmid 4568 suc11g 4594 onsucuni2 4601 0elsucexmid 4602 ordpwsucexmid 4607 peano2 4632 findes 4640 nn0suc 4641 0elnn 4656 omsinds 4659 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 tfrcl 6431 frecabcl 6466 frecsuc 6474 sucinc 6512 sucinc2 6513 oacl 6527 oav2 6530 oasuc 6531 oa1suc 6534 nna0r 6545 nnacom 6551 nnaass 6552 nnmsucr 6555 nnsucelsuc 6558 nnsucsssuc 6559 nnaword 6578 nnaordex 6595 phplem3g 6926 nneneq 6927 php5 6928 php5dom 6933 omp1eomlem 7169 omp1eom 7170 nninfninc 7198 nnnninfeq 7203 nnnninfeq2 7204 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 nninfwlpoim 7253 indpi 7426 ennnfoneleminc 12653 ennnfonelemex 12656 bj-indsuc 15658 bj-bdfindes 15679 bj-nn0suc0 15680 bj-peano4 15685 bj-inf2vnlem1 15700 bj-nn0sucALT 15708 bj-findes 15711 nnsf 15736 nninfsellemdc 15741 nninfself 15744 nninfsellemeqinf 15747 nninfomni 15750 |
| Copyright terms: Public domain | W3C validator |