| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suceq | GIF version | ||
| Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | sneq 3654 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | uneq12d 3336 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
| 4 | df-suc 4436 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | df-suc 4436 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 6 | 3, 4, 5 | 3eqtr4g 2265 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cun 3172 {csn 3643 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-suc 4436 |
| This theorem is referenced by: eqelsuc 4484 2ordpr 4590 onsucsssucexmid 4593 onsucelsucexmid 4596 ordsucunielexmid 4597 suc11g 4623 onsucuni2 4630 0elsucexmid 4631 ordpwsucexmid 4636 peano2 4661 findes 4669 nn0suc 4670 0elnn 4685 omsinds 4688 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 tfrcl 6473 frecabcl 6508 frecsuc 6516 sucinc 6554 sucinc2 6555 oacl 6569 oav2 6572 oasuc 6573 oa1suc 6576 nna0r 6587 nnacom 6593 nnaass 6594 nnmsucr 6597 nnsucelsuc 6600 nnsucsssuc 6601 nnaword 6620 nnaordex 6637 phplem3g 6978 nneneq 6979 php5 6980 php5dom 6985 omp1eomlem 7222 omp1eom 7223 nninfninc 7251 nnnninfeq 7256 nnnninfeq2 7257 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 nninfwlpoim 7307 nninfinfwlpo 7308 indpi 7490 ennnfoneleminc 12897 ennnfonelemex 12900 bj-indsuc 16063 bj-bdfindes 16084 bj-nn0suc0 16085 bj-peano4 16090 bj-inf2vnlem1 16105 bj-nn0sucALT 16113 bj-findes 16116 nnsf 16144 nninfsellemdc 16149 nninfself 16152 nninfsellemeqinf 16155 nninfomni 16158 |
| Copyright terms: Public domain | W3C validator |