![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suceq | GIF version |
Description: Equality of successors. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
suceq | ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | sneq 3461 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | uneq12d 3156 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
4 | df-suc 4207 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
5 | df-suc 4207 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
6 | 3, 4, 5 | 3eqtr4g 2146 | 1 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∪ cun 2998 {csn 3450 suc csuc 4201 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-sn 3456 df-suc 4207 |
This theorem is referenced by: eqelsuc 4255 2ordpr 4353 onsucsssucexmid 4356 onsucelsucexmid 4359 ordsucunielexmid 4360 suc11g 4386 onsucuni2 4393 0elsucexmid 4394 ordpwsucexmid 4399 peano2 4423 findes 4431 nn0suc 4432 0elnn 4445 omsinds 4448 tfr1onlemsucaccv 6120 tfrcllemsucaccv 6133 tfrcl 6143 frecabcl 6178 frecsuc 6186 sucinc 6220 sucinc2 6221 oacl 6235 oav2 6238 oasuc 6239 oa1suc 6242 nna0r 6253 nnacom 6259 nnaass 6260 nnmsucr 6263 nnsucelsuc 6266 nnsucsssuc 6267 nnaword 6284 nnaordex 6300 phplem3g 6626 nneneq 6627 php5 6628 php5dom 6633 indpi 6962 bj-indsuc 12096 bj-bdfindes 12117 bj-nn0suc0 12118 bj-peano4 12123 bj-inf2vnlem1 12138 bj-nn0sucALT 12146 bj-findes 12149 nnsf 12167 nninfalllemn 12170 nninfsellemdc 12174 nninfself 12177 nninfsellemeqinf 12180 nninfomni 12183 |
Copyright terms: Public domain | W3C validator |