![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2193 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtri 3204 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊆ wss 3144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: eqimss2i 3227 difdif2ss 3407 snsspr1 3755 snsspr2 3756 snsstp1 3757 snsstp2 3758 snsstp3 3759 prsstp12 3760 prsstp13 3761 prsstp23 3762 iunxdif2 3950 pwpwssunieq 3990 sssucid 4433 opabssxp 4718 dmresi 4980 cnvimass 5009 ssrnres 5089 cnvcnv 5099 cnvssrndm 5168 dmmpossx 6225 tfrcllemssrecs 6378 sucinc 6471 mapex 6681 exmidpw 6937 exmidpweq 6938 casefun 7115 djufun 7134 pw1ne1 7259 ressxr 8032 ltrelxr 8049 nnssnn0 9210 un0addcl 9240 un0mulcl 9241 nn0ssxnn0 9273 fzssnn 10100 fzossnn0 10207 isumclim3 11466 isprm3 12153 phimullem 12260 tgvalex 12771 eqgfval 13178 cnfldbas 13885 cnfldadd 13886 cnfldmul 13887 cnfldcj 13888 cnrest2 14213 qtopbasss 14498 tgqioo 14524 |
Copyright terms: Public domain | W3C validator |