| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) | 
| Ref | Expression | 
|---|---|
| sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 | 
| sseqtrri.2 | ⊢ 𝐶 = 𝐵 | 
| Ref | Expression | 
|---|---|
| sseqtrri | ⊢ 𝐴 ⊆ 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 | 
| 4 | 1, 3 | sseqtri 3217 | 1 ⊢ 𝐴 ⊆ 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: eqimss2i 3240 difdif2ss 3420 snsspr1 3770 snsspr2 3771 snsstp1 3772 snsstp2 3773 snsstp3 3774 prsstp12 3775 prsstp13 3776 prsstp23 3777 iunxdif2 3965 pwpwssunieq 4005 sssucid 4450 opabssxp 4737 dmresi 5001 cnvimass 5032 ssrnres 5112 cnvcnv 5122 cnvssrndm 5191 dmmpossx 6257 tfrcllemssrecs 6410 sucinc 6503 mapex 6713 exmidpw 6969 exmidpweq 6970 casefun 7151 djufun 7170 pw1ne1 7296 ressxr 8070 ltrelxr 8087 nnssnn0 9252 un0addcl 9282 un0mulcl 9283 nn0ssxnn0 9315 fzssnn 10143 fzossnn0 10251 isumclim3 11588 isprm3 12286 phimullem 12393 tgvalex 12934 eqgfval 13352 cnfldbas 14116 mpocnfldadd 14117 mpocnfldmul 14119 cnfldcj 14121 cnfldtset 14122 cnfldle 14123 cnfldds 14124 cnrest2 14472 qtopbasss 14757 tgqioo 14791 | 
| Copyright terms: Public domain | W3C validator |