ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrri GIF version

Theorem sseqtrri 3215
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
sseqtrri.1 𝐴𝐵
sseqtrri.2 𝐶 = 𝐵
Assertion
Ref Expression
sseqtrri 𝐴𝐶

Proof of Theorem sseqtrri
StepHypRef Expression
1 sseqtrri.1 . 2 𝐴𝐵
2 sseqtrri.2 . . 3 𝐶 = 𝐵
32eqcomi 2197 . 2 𝐵 = 𝐶
41, 3sseqtri 3214 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167
This theorem is referenced by:  eqimss2i  3237  difdif2ss  3417  snsspr1  3767  snsspr2  3768  snsstp1  3769  snsstp2  3770  snsstp3  3771  prsstp12  3772  prsstp13  3773  prsstp23  3774  iunxdif2  3962  pwpwssunieq  4002  sssucid  4447  opabssxp  4734  dmresi  4998  cnvimass  5029  ssrnres  5109  cnvcnv  5119  cnvssrndm  5188  dmmpossx  6254  tfrcllemssrecs  6407  sucinc  6500  mapex  6710  exmidpw  6966  exmidpweq  6967  casefun  7146  djufun  7165  pw1ne1  7291  ressxr  8065  ltrelxr  8082  nnssnn0  9246  un0addcl  9276  un0mulcl  9277  nn0ssxnn0  9309  fzssnn  10137  fzossnn0  10245  isumclim3  11569  isprm3  12259  phimullem  12366  tgvalex  12877  eqgfval  13295  cnfldbas  14059  mpocnfldadd  14060  mpocnfldmul  14062  cnfldcj  14064  cnfldtset  14065  cnfldle  14066  cnfldds  14067  cnrest2  14415  qtopbasss  14700  tgqioo  14734
  Copyright terms: Public domain W3C validator