ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrri GIF version

Theorem sseqtrri 3205
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.)
Hypotheses
Ref Expression
sseqtrri.1 𝐴𝐵
sseqtrri.2 𝐶 = 𝐵
Assertion
Ref Expression
sseqtrri 𝐴𝐶

Proof of Theorem sseqtrri
StepHypRef Expression
1 sseqtrri.1 . 2 𝐴𝐵
2 sseqtrri.2 . . 3 𝐶 = 𝐵
32eqcomi 2193 . 2 𝐵 = 𝐶
41, 3sseqtri 3204 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  eqimss2i  3227  difdif2ss  3407  snsspr1  3755  snsspr2  3756  snsstp1  3757  snsstp2  3758  snsstp3  3759  prsstp12  3760  prsstp13  3761  prsstp23  3762  iunxdif2  3950  pwpwssunieq  3990  sssucid  4433  opabssxp  4718  dmresi  4980  cnvimass  5009  ssrnres  5089  cnvcnv  5099  cnvssrndm  5168  dmmpossx  6225  tfrcllemssrecs  6378  sucinc  6471  mapex  6681  exmidpw  6937  exmidpweq  6938  casefun  7115  djufun  7134  pw1ne1  7259  ressxr  8032  ltrelxr  8049  nnssnn0  9210  un0addcl  9240  un0mulcl  9241  nn0ssxnn0  9273  fzssnn  10100  fzossnn0  10207  isumclim3  11466  isprm3  12153  phimullem  12260  tgvalex  12771  eqgfval  13178  cnfldbas  13885  cnfldadd  13886  cnfldmul  13887  cnfldcj  13888  cnrest2  14213  qtopbasss  14498  tgqioo  14524
  Copyright terms: Public domain W3C validator