![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtri 3213 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: eqimss2i 3236 difdif2ss 3416 snsspr1 3766 snsspr2 3767 snsstp1 3768 snsstp2 3769 snsstp3 3770 prsstp12 3771 prsstp13 3772 prsstp23 3773 iunxdif2 3961 pwpwssunieq 4001 sssucid 4446 opabssxp 4733 dmresi 4997 cnvimass 5028 ssrnres 5108 cnvcnv 5118 cnvssrndm 5187 dmmpossx 6252 tfrcllemssrecs 6405 sucinc 6498 mapex 6708 exmidpw 6964 exmidpweq 6965 casefun 7144 djufun 7163 pw1ne1 7289 ressxr 8063 ltrelxr 8080 nnssnn0 9243 un0addcl 9273 un0mulcl 9274 nn0ssxnn0 9306 fzssnn 10134 fzossnn0 10242 isumclim3 11566 isprm3 12256 phimullem 12363 tgvalex 12874 eqgfval 13292 cnfldbas 14051 cnfldadd 14052 cnfldmul 14054 cnfldcj 14056 cnrest2 14404 qtopbasss 14689 tgqioo 14715 |
Copyright terms: Public domain | W3C validator |