![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtri 3214 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqimss2i 3237 difdif2ss 3417 snsspr1 3767 snsspr2 3768 snsstp1 3769 snsstp2 3770 snsstp3 3771 prsstp12 3772 prsstp13 3773 prsstp23 3774 iunxdif2 3962 pwpwssunieq 4002 sssucid 4447 opabssxp 4734 dmresi 4998 cnvimass 5029 ssrnres 5109 cnvcnv 5119 cnvssrndm 5188 dmmpossx 6254 tfrcllemssrecs 6407 sucinc 6500 mapex 6710 exmidpw 6966 exmidpweq 6967 casefun 7146 djufun 7165 pw1ne1 7291 ressxr 8065 ltrelxr 8082 nnssnn0 9246 un0addcl 9276 un0mulcl 9277 nn0ssxnn0 9309 fzssnn 10137 fzossnn0 10245 isumclim3 11569 isprm3 12259 phimullem 12366 tgvalex 12877 eqgfval 13295 cnfldbas 14059 mpocnfldadd 14060 mpocnfldmul 14062 cnfldcj 14064 cnfldtset 14065 cnfldle 14066 cnfldds 14067 cnrest2 14415 qtopbasss 14700 tgqioo 14734 |
Copyright terms: Public domain | W3C validator |