| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtri 3218 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqimss2i 3241 difdif2ss 3421 snsspr1 3771 snsspr2 3772 snsstp1 3773 snsstp2 3774 snsstp3 3775 prsstp12 3776 prsstp13 3777 prsstp23 3778 iunxdif2 3966 pwpwssunieq 4006 sssucid 4451 opabssxp 4738 dmresi 5002 cnvimass 5033 ssrnres 5113 cnvcnv 5123 cnvssrndm 5192 dmmpossx 6266 tfrcllemssrecs 6419 sucinc 6512 mapex 6722 exmidpw 6978 exmidpweq 6979 casefun 7160 djufun 7179 pw1ne1 7312 ressxr 8087 ltrelxr 8104 nnssnn0 9269 un0addcl 9299 un0mulcl 9300 nn0ssxnn0 9332 fzssnn 10160 fzossnn0 10268 isumclim3 11605 isprm3 12311 phimullem 12418 tgvalex 12965 eqgfval 13428 cnfldbas 14192 mpocnfldadd 14193 mpocnfldmul 14195 cnfldcj 14197 cnfldtset 14198 cnfldle 14199 cnfldds 14200 cnrest2 14556 qtopbasss 14841 tgqioo 14875 |
| Copyright terms: Public domain | W3C validator |