Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtri 3176 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqimss2i 3199 difdif2ss 3379 snsspr1 3721 snsspr2 3722 snsstp1 3723 snsstp2 3724 snsstp3 3725 prsstp12 3726 prsstp13 3727 prsstp23 3728 iunxdif2 3914 pwpwssunieq 3954 sssucid 4393 opabssxp 4678 dmresi 4939 cnvimass 4967 ssrnres 5046 cnvcnv 5056 cnvssrndm 5125 dmmpossx 6167 tfrcllemssrecs 6320 sucinc 6413 mapex 6620 exmidpw 6874 exmidpweq 6875 casefun 7050 djufun 7069 pw1ne1 7185 ressxr 7942 ltrelxr 7959 nnssnn0 9117 un0addcl 9147 un0mulcl 9148 nn0ssxnn0 9180 fzssnn 10003 fzossnn0 10110 isumclim3 11364 isprm3 12050 phimullem 12157 tgvalex 12690 cnrest2 12876 qtopbasss 13161 tgqioo 13187 |
Copyright terms: Public domain | W3C validator |