| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2213 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtri 3238 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: eqimss2i 3261 difdif2ss 3441 snsspr1 3795 snsspr2 3796 snsstp1 3797 snsstp2 3798 snsstp3 3799 prsstp12 3800 prsstp13 3801 prsstp23 3802 iunxdif2 3993 pwpwssunieq 4033 sssucid 4483 opabssxp 4770 dmresi 5036 cnvimass 5067 ssrnres 5147 cnvcnv 5157 cnvssrndm 5226 dmmpossx 6315 tfrcllemssrecs 6468 sucinc 6561 mapex 6771 exmidpw 7038 exmidpweq 7039 casefun 7220 djufun 7239 pw1ne1 7382 ressxr 8158 ltrelxr 8175 nnssnn0 9340 un0addcl 9370 un0mulcl 9371 nn0ssxnn0 9403 fzssnn 10232 fzossnn0 10341 isumclim3 11900 isprm3 12606 phimullem 12713 tgvalex 13262 eqgfval 13725 cnfldbas 14489 mpocnfldadd 14490 mpocnfldmul 14492 cnfldcj 14494 cnfldtset 14495 cnfldle 14496 cnfldds 14497 cnrest2 14875 qtopbasss 15160 tgqioo 15194 |
| Copyright terms: Public domain | W3C validator |