| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtri 3258 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqimss2i 3281 difdif2ss 3461 snsspr1 3816 snsspr2 3817 snsstp1 3818 snsstp2 3819 snsstp3 3820 prsstp12 3821 prsstp13 3822 prsstp23 3823 iunxdif2 4014 pwpwssunieq 4054 sssucid 4506 opabssxp 4793 dmresi 5060 cnvimass 5091 ssrnres 5171 cnvcnv 5181 cnvssrndm 5250 dmmpossx 6351 tfrcllemssrecs 6504 sucinc 6599 mapex 6809 exmidpw 7078 exmidpweq 7079 casefun 7260 djufun 7279 pw1ne1 7422 ressxr 8198 ltrelxr 8215 nnssnn0 9380 un0addcl 9410 un0mulcl 9411 nn0ssxnn0 9443 fzssnn 10272 fzossnn0 10381 isumclim3 11942 isprm3 12648 phimullem 12755 tgvalex 13304 eqgfval 13767 cnfldbas 14532 mpocnfldadd 14533 mpocnfldmul 14535 cnfldcj 14537 cnfldtset 14538 cnfldle 14539 cnfldds 14540 cnrest2 14918 qtopbasss 15203 tgqioo 15237 |
| Copyright terms: Public domain | W3C validator |