Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtri 3181 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqimss2i 3204 difdif2ss 3384 snsspr1 3728 snsspr2 3729 snsstp1 3730 snsstp2 3731 snsstp3 3732 prsstp12 3733 prsstp13 3734 prsstp23 3735 iunxdif2 3921 pwpwssunieq 3961 sssucid 4400 opabssxp 4685 dmresi 4946 cnvimass 4974 ssrnres 5053 cnvcnv 5063 cnvssrndm 5132 dmmpossx 6178 tfrcllemssrecs 6331 sucinc 6424 mapex 6632 exmidpw 6886 exmidpweq 6887 casefun 7062 djufun 7081 pw1ne1 7206 ressxr 7963 ltrelxr 7980 nnssnn0 9138 un0addcl 9168 un0mulcl 9169 nn0ssxnn0 9201 fzssnn 10024 fzossnn0 10131 isumclim3 11386 isprm3 12072 phimullem 12179 tgvalex 12844 cnrest2 13030 qtopbasss 13315 tgqioo 13341 |
Copyright terms: Public domain | W3C validator |