| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2210 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtri 3228 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: eqimss2i 3251 difdif2ss 3431 snsspr1 3783 snsspr2 3784 snsstp1 3785 snsstp2 3786 snsstp3 3787 prsstp12 3788 prsstp13 3789 prsstp23 3790 iunxdif2 3978 pwpwssunieq 4018 sssucid 4466 opabssxp 4753 dmresi 5019 cnvimass 5050 ssrnres 5130 cnvcnv 5140 cnvssrndm 5209 dmmpossx 6292 tfrcllemssrecs 6445 sucinc 6538 mapex 6748 exmidpw 7012 exmidpweq 7013 casefun 7194 djufun 7213 pw1ne1 7348 ressxr 8123 ltrelxr 8140 nnssnn0 9305 un0addcl 9335 un0mulcl 9336 nn0ssxnn0 9368 fzssnn 10197 fzossnn0 10306 isumclim3 11778 isprm3 12484 phimullem 12591 tgvalex 13139 eqgfval 13602 cnfldbas 14366 mpocnfldadd 14367 mpocnfldmul 14369 cnfldcj 14371 cnfldtset 14372 cnfldle 14373 cnfldds 14374 cnrest2 14752 qtopbasss 15037 tgqioo 15071 |
| Copyright terms: Public domain | W3C validator |