Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | sseqtri 3181 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqimss2i 3204 difdif2ss 3384 snsspr1 3726 snsspr2 3727 snsstp1 3728 snsstp2 3729 snsstp3 3730 prsstp12 3731 prsstp13 3732 prsstp23 3733 iunxdif2 3919 pwpwssunieq 3959 sssucid 4398 opabssxp 4683 dmresi 4944 cnvimass 4972 ssrnres 5051 cnvcnv 5061 cnvssrndm 5130 dmmpossx 6176 tfrcllemssrecs 6329 sucinc 6422 mapex 6629 exmidpw 6883 exmidpweq 6884 casefun 7059 djufun 7078 pw1ne1 7195 ressxr 7952 ltrelxr 7969 nnssnn0 9127 un0addcl 9157 un0mulcl 9158 nn0ssxnn0 9190 fzssnn 10013 fzossnn0 10120 isumclim3 11375 isprm3 12061 phimullem 12168 tgvalex 12805 cnrest2 12991 qtopbasss 13276 tgqioo 13302 |
Copyright terms: Public domain | W3C validator |