| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
| Ref | Expression |
|---|---|
| sseqtrri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtrri.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| sseqtrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtrri.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | sseqtri 3218 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqimss2i 3241 difdif2ss 3421 snsspr1 3771 snsspr2 3772 snsstp1 3773 snsstp2 3774 snsstp3 3775 prsstp12 3776 prsstp13 3777 prsstp23 3778 iunxdif2 3966 pwpwssunieq 4006 sssucid 4451 opabssxp 4738 dmresi 5002 cnvimass 5033 ssrnres 5113 cnvcnv 5123 cnvssrndm 5192 dmmpossx 6266 tfrcllemssrecs 6419 sucinc 6512 mapex 6722 exmidpw 6978 exmidpweq 6979 casefun 7160 djufun 7179 pw1ne1 7314 ressxr 8089 ltrelxr 8106 nnssnn0 9271 un0addcl 9301 un0mulcl 9302 nn0ssxnn0 9334 fzssnn 10162 fzossnn0 10270 isumclim3 11607 isprm3 12313 phimullem 12420 tgvalex 12967 eqgfval 13430 cnfldbas 14194 mpocnfldadd 14195 mpocnfldmul 14197 cnfldcj 14199 cnfldtset 14200 cnfldle 14201 cnfldds 14202 cnrest2 14558 qtopbasss 14843 tgqioo 14877 |
| Copyright terms: Public domain | W3C validator |