ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restid GIF version

Theorem restid 12163
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restid.1 𝑋 = 𝐽
Assertion
Ref Expression
restid (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)

Proof of Theorem restid
StepHypRef Expression
1 restid.1 . . 3 𝑋 = 𝐽
2 uniexg 4367 . . 3 (𝐽𝑉 𝐽 ∈ V)
31, 2eqeltrid 2227 . 2 (𝐽𝑉𝑋 ∈ V)
41eqimss2i 3157 . . 3 𝐽𝑋
5 sspwuni 3903 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
64, 5mpbir 145 . 2 𝐽 ⊆ 𝒫 𝑋
7 restid2 12161 . 2 ((𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋) → (𝐽t 𝑋) = 𝐽)
83, 6, 7sylancl 410 1 (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481  Vcvv 2689  wss 3074  𝒫 cpw 3513   cuni 3742  (class class class)co 5780  t crest 12152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-ov 5783  df-oprab 5784  df-mpo 5785  df-rest 12154
This theorem is referenced by:  toponrestid  12220  restin  12377
  Copyright terms: Public domain W3C validator