![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cocnvss | GIF version |
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cocnvss | ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cocnvres 5191 | . 2 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) | |
2 | cossxp 5189 | . . 3 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | |
3 | df-rn 4671 | . . . . 5 ⊢ ran (𝑅 ↾ dom 𝑆) = dom ◡(𝑅 ↾ dom 𝑆) | |
4 | 3 | eqimss2i 3237 | . . . 4 ⊢ dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) |
5 | ssid 3200 | . . . 4 ⊢ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅) | |
6 | xpss12 4767 | . . . 4 ⊢ ((dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) ∧ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)) → (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))) | |
7 | 4, 5, 6 | mp2an 426 | . . 3 ⊢ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
8 | 2, 7 | sstri 3189 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
9 | 1, 8 | eqsstri 3212 | 1 ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3154 × cxp 4658 ◡ccnv 4659 dom cdm 4660 ran crn 4661 ↾ cres 4662 ∘ ccom 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 |
This theorem is referenced by: caserel 7148 |
Copyright terms: Public domain | W3C validator |