| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cocnvss | GIF version | ||
| Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| cocnvss | ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cocnvres 5206 | . 2 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) | |
| 2 | cossxp 5204 | . . 3 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | |
| 3 | df-rn 4685 | . . . . 5 ⊢ ran (𝑅 ↾ dom 𝑆) = dom ◡(𝑅 ↾ dom 𝑆) | |
| 4 | 3 | eqimss2i 3249 | . . . 4 ⊢ dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) |
| 5 | ssid 3212 | . . . 4 ⊢ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅) | |
| 6 | xpss12 4781 | . . . 4 ⊢ ((dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) ∧ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)) → (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))) | |
| 7 | 4, 5, 6 | mp2an 426 | . . 3 ⊢ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
| 8 | 2, 7 | sstri 3201 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
| 9 | 1, 8 | eqsstri 3224 | 1 ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3165 × cxp 4672 ◡ccnv 4673 dom cdm 4674 ran crn 4675 ↾ cres 4676 ∘ ccom 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 |
| This theorem is referenced by: caserel 7188 |
| Copyright terms: Public domain | W3C validator |