ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvss GIF version

Theorem cocnvss 5129
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvss (𝑆𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))

Proof of Theorem cocnvss
StepHypRef Expression
1 cocnvres 5128 . 2 (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
2 cossxp 5126 . . 3 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) ⊆ (dom (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
3 df-rn 4615 . . . . 5 ran (𝑅 ↾ dom 𝑆) = dom (𝑅 ↾ dom 𝑆)
43eqimss2i 3199 . . . 4 dom (𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆)
5 ssid 3162 . . . 4 ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)
6 xpss12 4711 . . . 4 ((dom (𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) ∧ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)) → (dom (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)))
74, 5, 6mp2an 423 . . 3 (dom (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
82, 7sstri 3151 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
91, 8eqsstri 3174 1 (𝑆𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
Colors of variables: wff set class
Syntax hints:  wss 3116   × cxp 4602  ccnv 4603  dom cdm 4604  ran crn 4605  cres 4606  ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616
This theorem is referenced by:  caserel  7052
  Copyright terms: Public domain W3C validator