| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cocnvss | GIF version | ||
| Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| cocnvss | ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cocnvres 5194 | . 2 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) | |
| 2 | cossxp 5192 | . . 3 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | |
| 3 | df-rn 4674 | . . . . 5 ⊢ ran (𝑅 ↾ dom 𝑆) = dom ◡(𝑅 ↾ dom 𝑆) | |
| 4 | 3 | eqimss2i 3240 | . . . 4 ⊢ dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) | 
| 5 | ssid 3203 | . . . 4 ⊢ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅) | |
| 6 | xpss12 4770 | . . . 4 ⊢ ((dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) ∧ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)) → (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))) | |
| 7 | 4, 5, 6 | mp2an 426 | . . 3 ⊢ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | 
| 8 | 2, 7 | sstri 3192 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | 
| 9 | 1, 8 | eqsstri 3215 | 1 ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | 
| Colors of variables: wff set class | 
| Syntax hints: ⊆ wss 3157 × cxp 4661 ◡ccnv 4662 dom cdm 4663 ran crn 4664 ↾ cres 4665 ∘ ccom 4667 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 | 
| This theorem is referenced by: caserel 7153 | 
| Copyright terms: Public domain | W3C validator |