ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cocnvss GIF version

Theorem cocnvss 5207
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
cocnvss (𝑆𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))

Proof of Theorem cocnvss
StepHypRef Expression
1 cocnvres 5206 . 2 (𝑆𝑅) = ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆))
2 cossxp 5204 . . 3 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) ⊆ (dom (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
3 df-rn 4685 . . . . 5 ran (𝑅 ↾ dom 𝑆) = dom (𝑅 ↾ dom 𝑆)
43eqimss2i 3249 . . . 4 dom (𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆)
5 ssid 3212 . . . 4 ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)
6 xpss12 4781 . . . 4 ((dom (𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) ∧ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)) → (dom (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)))
74, 5, 6mp2an 426 . . 3 (dom (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
82, 7sstri 3201 . 2 ((𝑆 ↾ dom 𝑅) ∘ (𝑅 ↾ dom 𝑆)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
91, 8eqsstri 3224 1 (𝑆𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))
Colors of variables: wff set class
Syntax hints:  wss 3165   × cxp 4672  ccnv 4673  dom cdm 4674  ran crn 4675  cres 4676  ccom 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686
This theorem is referenced by:  caserel  7188
  Copyright terms: Public domain W3C validator