Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cocnvss | GIF version |
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cocnvss | ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cocnvres 5135 | . 2 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) | |
2 | cossxp 5133 | . . 3 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | |
3 | df-rn 4622 | . . . . 5 ⊢ ran (𝑅 ↾ dom 𝑆) = dom ◡(𝑅 ↾ dom 𝑆) | |
4 | 3 | eqimss2i 3204 | . . . 4 ⊢ dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) |
5 | ssid 3167 | . . . 4 ⊢ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅) | |
6 | xpss12 4718 | . . . 4 ⊢ ((dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) ∧ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)) → (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))) | |
7 | 4, 5, 6 | mp2an 424 | . . 3 ⊢ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
8 | 2, 7 | sstri 3156 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
9 | 1, 8 | eqsstri 3179 | 1 ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3121 × cxp 4609 ◡ccnv 4610 dom cdm 4611 ran crn 4612 ↾ cres 4613 ∘ ccom 4615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 |
This theorem is referenced by: caserel 7064 |
Copyright terms: Public domain | W3C validator |