![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cocnvss | GIF version |
Description: Upper bound for the composed of a relation and an inverse relation. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
cocnvss | ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cocnvres 5155 | . 2 ⊢ (𝑆 ∘ ◡𝑅) = ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) | |
2 | cossxp 5153 | . . 3 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) | |
3 | df-rn 4639 | . . . . 5 ⊢ ran (𝑅 ↾ dom 𝑆) = dom ◡(𝑅 ↾ dom 𝑆) | |
4 | 3 | eqimss2i 3214 | . . . 4 ⊢ dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) |
5 | ssid 3177 | . . . 4 ⊢ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅) | |
6 | xpss12 4735 | . . . 4 ⊢ ((dom ◡(𝑅 ↾ dom 𝑆) ⊆ ran (𝑅 ↾ dom 𝑆) ∧ ran (𝑆 ↾ dom 𝑅) ⊆ ran (𝑆 ↾ dom 𝑅)) → (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅))) | |
7 | 4, 5, 6 | mp2an 426 | . . 3 ⊢ (dom ◡(𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
8 | 2, 7 | sstri 3166 | . 2 ⊢ ((𝑆 ↾ dom 𝑅) ∘ ◡(𝑅 ↾ dom 𝑆)) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
9 | 1, 8 | eqsstri 3189 | 1 ⊢ (𝑆 ∘ ◡𝑅) ⊆ (ran (𝑅 ↾ dom 𝑆) × ran (𝑆 ↾ dom 𝑅)) |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3131 × cxp 4626 ◡ccnv 4627 dom cdm 4628 ran crn 4629 ↾ cres 4630 ∘ ccom 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 |
This theorem is referenced by: caserel 7088 |
Copyright terms: Public domain | W3C validator |