![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xaddnepnf | GIF version |
Description: Closure of extended real addition in the subset ℝ* / {+∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddnepnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnepnf 9847 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) | |
2 | xrnepnf 9847 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) | |
3 | rexadd 9921 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
4 | readdcl 8000 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
5 | 3, 4 | eqeltrd 2270 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) |
6 | 5 | renepnfd 8072 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ +∞) |
7 | oveq2 5927 | . . . . . . 7 ⊢ (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞)) | |
8 | rexr 8067 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
9 | renepnf 8069 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
10 | xaddmnf1 9917 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞) | |
11 | 8, 9, 10 | syl2anc 411 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞) |
12 | 7, 11 | sylan9eqr 2248 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞) |
13 | mnfnepnf 8077 | . . . . . . 7 ⊢ -∞ ≠ +∞ | |
14 | 13 | a1i 9 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → -∞ ≠ +∞) |
15 | 12, 14 | eqnetrd 2388 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) ≠ +∞) |
16 | 6, 15 | jaodan 798 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
17 | 2, 16 | sylan2b 287 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
18 | oveq1 5926 | . . . . 5 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵)) | |
19 | xaddmnf2 9918 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞) | |
20 | 18, 19 | sylan9eq 2246 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) = -∞) |
21 | 13 | a1i 9 | . . . 4 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → -∞ ≠ +∞) |
22 | 20, 21 | eqnetrd 2388 | . . 3 ⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
23 | 17, 22 | jaoian 796 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
24 | 1, 23 | sylanb 284 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 (class class class)co 5919 ℝcr 7873 + caddc 7877 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 +𝑒 cxad 9839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-xadd 9842 |
This theorem is referenced by: xlt2add 9949 |
Copyright terms: Public domain | W3C validator |