Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > phibndlem | GIF version |
Description: Lemma for phibnd 12149. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phibndlem | ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ (1...(𝑁 − 1))) | |
2 | 1 | a1d 22 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
3 | eluzelz 9475 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
4 | gcdid 11919 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | |
5 | 3, 4 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁)) |
6 | eluz2nn 9504 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
7 | nnre 8864 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
8 | nnnn0 9121 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
9 | 8 | nn0ge0d 9170 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
10 | 7, 9 | absidd 11109 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁) |
11 | 6, 10 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (abs‘𝑁) = 𝑁) |
12 | 5, 11 | eqtrd 2198 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = 𝑁) |
13 | 1re 7898 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
14 | eluz2gt1 9540 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
15 | ltne 7983 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1) | |
16 | 13, 14, 15 | sylancr 411 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
17 | 12, 16 | eqnetrd 2360 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) ≠ 1) |
18 | oveq1 5849 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁)) | |
19 | 18 | neeq1d 2354 | . . . . . . . . 9 ⊢ (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1)) |
20 | 17, 19 | syl5ibrcom 156 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1)) |
21 | 20 | imp 123 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1) |
22 | 21 | adantlr 469 | . . . . . 6 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1) |
23 | 22 | neneqd 2357 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ¬ (𝑥 gcd 𝑁) = 1) |
24 | 23 | pm2.21d 609 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
25 | fzm1 10035 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) | |
26 | nnuz 9501 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
27 | 25, 26 | eleq2s 2261 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) |
28 | 27 | biimpa 294 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
29 | 6, 28 | sylan 281 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
30 | 2, 24, 29 | mpjaodan 788 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
31 | 30 | ralrimiva 2539 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
32 | rabss 3219 | . 2 ⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) | |
33 | 31, 32 | sylibr 133 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 {crab 2448 ⊆ wss 3116 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 1c1 7754 < clt 7933 − cmin 8069 ℕcn 8857 2c2 8908 ℤcz 9191 ℤ≥cuz 9466 ...cfz 9944 abscabs 10939 gcd cgcd 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 |
This theorem is referenced by: phibnd 12149 dfphi2 12152 |
Copyright terms: Public domain | W3C validator |