![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > phibndlem | GIF version |
Description: Lemma for phibnd 12355. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phibndlem | ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ (1...(𝑁 − 1))) | |
2 | 1 | a1d 22 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
3 | eluzelz 9601 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
4 | gcdid 12123 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | |
5 | 3, 4 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁)) |
6 | eluz2nn 9631 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
7 | nnre 8989 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
8 | nnnn0 9247 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
9 | 8 | nn0ge0d 9296 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
10 | 7, 9 | absidd 11311 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁) |
11 | 6, 10 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (abs‘𝑁) = 𝑁) |
12 | 5, 11 | eqtrd 2226 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = 𝑁) |
13 | 1re 8018 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
14 | eluz2gt1 9667 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
15 | ltne 8104 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1) | |
16 | 13, 14, 15 | sylancr 414 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
17 | 12, 16 | eqnetrd 2388 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) ≠ 1) |
18 | oveq1 5925 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁)) | |
19 | 18 | neeq1d 2382 | . . . . . . . . 9 ⊢ (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1)) |
20 | 17, 19 | syl5ibrcom 157 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1)) |
21 | 20 | imp 124 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1) |
22 | 21 | adantlr 477 | . . . . . 6 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1) |
23 | 22 | neneqd 2385 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ¬ (𝑥 gcd 𝑁) = 1) |
24 | 23 | pm2.21d 620 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
25 | fzm1 10166 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) | |
26 | nnuz 9628 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
27 | 25, 26 | eleq2s 2288 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) |
28 | 27 | biimpa 296 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
29 | 6, 28 | sylan 283 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
30 | 2, 24, 29 | mpjaodan 799 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
31 | 30 | ralrimiva 2567 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
32 | rabss 3256 | . 2 ⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) | |
33 | 31, 32 | sylibr 134 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 {crab 2476 ⊆ wss 3153 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 1c1 7873 < clt 8054 − cmin 8190 ℕcn 8982 2c2 9033 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 abscabs 11141 gcd cgcd 12079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-sup 7043 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-dvds 11931 df-gcd 12080 |
This theorem is referenced by: phibnd 12355 dfphi2 12358 |
Copyright terms: Public domain | W3C validator |