ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phibndlem GIF version

Theorem phibndlem 12068
Description: Lemma for phibnd 12069. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phibndlem
StepHypRef Expression
1 simpr 109 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ (1...(𝑁 − 1)))
21a1d 22 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3 eluzelz 9431 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
4 gcdid 11850 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
53, 4syl 14 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁))
6 eluz2nn 9460 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
7 nnre 8823 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
8 nnnn0 9080 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
98nn0ge0d 9129 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
107, 9absidd 11049 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
116, 10syl 14 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
125, 11eqtrd 2190 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = 𝑁)
13 1re 7860 . . . . . . . . . . 11 1 ∈ ℝ
14 eluz2gt1 9495 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
15 ltne 7945 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1)
1613, 14, 15sylancr 411 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
1712, 16eqnetrd 2351 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) ≠ 1)
18 oveq1 5825 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁))
1918neeq1d 2345 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1))
2017, 19syl5ibrcom 156 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
2120imp 123 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1)
2221adantlr 469 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1)
2322neneqd 2348 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ¬ (𝑥 gcd 𝑁) = 1)
2423pm2.21d 609 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
25 fzm1 9984 . . . . . . 7 (𝑁 ∈ (ℤ‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
26 nnuz 9457 . . . . . . 7 ℕ = (ℤ‘1)
2725, 26eleq2s 2252 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
2827biimpa 294 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
296, 28sylan 281 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
302, 24, 29mpjaodan 788 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3130ralrimiva 2530 . 2 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
32 rabss 3205 . 2 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3331, 32sylibr 133 1 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1335  wcel 2128  wne 2327  wral 2435  {crab 2439  wss 3102   class class class wbr 3965  cfv 5167  (class class class)co 5818  cr 7714  1c1 7716   < clt 7895  cmin 8029  cn 8816  2c2 8867  cz 9150  cuz 9422  ...cfz 9894  abscabs 10879   gcd cgcd 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-sup 6920  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-fl 10151  df-mod 10204  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-dvds 11666  df-gcd 11811
This theorem is referenced by:  phibnd  12069  dfphi2  12072
  Copyright terms: Public domain W3C validator