ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phibndlem GIF version

Theorem phibndlem 12354
Description: Lemma for phibnd 12355. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phibndlem
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ (1...(𝑁 − 1)))
21a1d 22 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3 eluzelz 9601 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
4 gcdid 12123 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
53, 4syl 14 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁))
6 eluz2nn 9631 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
7 nnre 8989 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
8 nnnn0 9247 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
98nn0ge0d 9296 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
107, 9absidd 11311 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
116, 10syl 14 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
125, 11eqtrd 2226 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = 𝑁)
13 1re 8018 . . . . . . . . . . 11 1 ∈ ℝ
14 eluz2gt1 9667 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
15 ltne 8104 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1)
1613, 14, 15sylancr 414 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
1712, 16eqnetrd 2388 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) ≠ 1)
18 oveq1 5925 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁))
1918neeq1d 2382 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1))
2017, 19syl5ibrcom 157 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
2120imp 124 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1)
2221adantlr 477 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1)
2322neneqd 2385 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ¬ (𝑥 gcd 𝑁) = 1)
2423pm2.21d 620 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
25 fzm1 10166 . . . . . . 7 (𝑁 ∈ (ℤ‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
26 nnuz 9628 . . . . . . 7 ℕ = (ℤ‘1)
2725, 26eleq2s 2288 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
2827biimpa 296 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
296, 28sylan 283 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
302, 24, 29mpjaodan 799 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3130ralrimiva 2567 . 2 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
32 rabss 3256 . 2 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3331, 32sylibr 134 1 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wne 2364  wral 2472  {crab 2476  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918  cr 7871  1c1 7873   < clt 8054  cmin 8190  cn 8982  2c2 9033  cz 9317  cuz 9592  ...cfz 10074  abscabs 11141   gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  phibnd  12355  dfphi2  12358
  Copyright terms: Public domain W3C validator