![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > phibndlem | GIF version |
Description: Lemma for phibnd 12200. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
phibndlem | ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ (1...(𝑁 − 1))) | |
2 | 1 | a1d 22 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
3 | eluzelz 9526 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
4 | gcdid 11970 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | |
5 | 3, 4 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁)) |
6 | eluz2nn 9555 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
7 | nnre 8915 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
8 | nnnn0 9172 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
9 | 8 | nn0ge0d 9221 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
10 | 7, 9 | absidd 11160 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁) |
11 | 6, 10 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → (abs‘𝑁) = 𝑁) |
12 | 5, 11 | eqtrd 2210 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) = 𝑁) |
13 | 1re 7947 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
14 | eluz2gt1 9591 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
15 | ltne 8032 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1) | |
16 | 13, 14, 15 | sylancr 414 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 1) |
17 | 12, 16 | eqnetrd 2371 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 gcd 𝑁) ≠ 1) |
18 | oveq1 5876 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁)) | |
19 | 18 | neeq1d 2365 | . . . . . . . . 9 ⊢ (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1)) |
20 | 17, 19 | syl5ibrcom 157 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1)) |
21 | 20 | imp 124 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1) |
22 | 21 | adantlr 477 | . . . . . 6 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1) |
23 | 22 | neneqd 2368 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ¬ (𝑥 gcd 𝑁) = 1) |
24 | 23 | pm2.21d 619 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
25 | fzm1 10086 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) | |
26 | nnuz 9552 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
27 | 25, 26 | eleq2s 2272 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))) |
28 | 27 | biimpa 296 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
29 | 6, 28 | sylan 283 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)) |
30 | 2, 24, 29 | mpjaodan 798 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
31 | 30 | ralrimiva 2550 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) |
32 | rabss 3232 | . 2 ⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1)))) | |
33 | 31, 32 | sylibr 134 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ∀wral 2455 {crab 2459 ⊆ wss 3129 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 ℝcr 7801 1c1 7803 < clt 7982 − cmin 8118 ℕcn 8908 2c2 8959 ℤcz 9242 ℤ≥cuz 9517 ...cfz 9995 abscabs 10990 gcd cgcd 11926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-sup 6977 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fz 9996 df-fzo 10129 df-fl 10256 df-mod 10309 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-dvds 11779 df-gcd 11927 |
This theorem is referenced by: phibnd 12200 dfphi2 12203 |
Copyright terms: Public domain | W3C validator |