ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phibndlem GIF version

Theorem phibndlem 12218
Description: Lemma for phibnd 12219. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Distinct variable group:   𝑥,𝑁

Proof of Theorem phibndlem
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → 𝑥 ∈ (1...(𝑁 − 1)))
21a1d 22 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 ∈ (1...(𝑁 − 1))) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3 eluzelz 9539 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
4 gcdid 11989 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁))
53, 4syl 14 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = (abs‘𝑁))
6 eluz2nn 9568 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
7 nnre 8928 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
8 nnnn0 9185 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
98nn0ge0d 9234 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
107, 9absidd 11178 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (abs‘𝑁) = 𝑁)
116, 10syl 14 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (abs‘𝑁) = 𝑁)
125, 11eqtrd 2210 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) = 𝑁)
13 1re 7958 . . . . . . . . . . 11 1 ∈ ℝ
14 eluz2gt1 9604 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
15 ltne 8044 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 1 < 𝑁) → 𝑁 ≠ 1)
1613, 14, 15sylancr 414 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
1712, 16eqnetrd 2371 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 gcd 𝑁) ≠ 1)
18 oveq1 5884 . . . . . . . . . 10 (𝑥 = 𝑁 → (𝑥 gcd 𝑁) = (𝑁 gcd 𝑁))
1918neeq1d 2365 . . . . . . . . 9 (𝑥 = 𝑁 → ((𝑥 gcd 𝑁) ≠ 1 ↔ (𝑁 gcd 𝑁) ≠ 1))
2017, 19syl5ibrcom 157 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑥 = 𝑁 → (𝑥 gcd 𝑁) ≠ 1))
2120imp 124 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1)
2221adantlr 477 . . . . . 6 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → (𝑥 gcd 𝑁) ≠ 1)
2322neneqd 2368 . . . . 5 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ¬ (𝑥 gcd 𝑁) = 1)
2423pm2.21d 619 . . . 4 (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) ∧ 𝑥 = 𝑁) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
25 fzm1 10102 . . . . . . 7 (𝑁 ∈ (ℤ‘1) → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
26 nnuz 9565 . . . . . . 7 ℕ = (ℤ‘1)
2725, 26eleq2s 2272 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁)))
2827biimpa 296 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
296, 28sylan 283 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → (𝑥 ∈ (1...(𝑁 − 1)) ∨ 𝑥 = 𝑁))
302, 24, 29mpjaodan 798 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ (1...𝑁)) → ((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3130ralrimiva 2550 . 2 (𝑁 ∈ (ℤ‘2) → ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
32 rabss 3234 . 2 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)) ↔ ∀𝑥 ∈ (1...𝑁)((𝑥 gcd 𝑁) = 1 → 𝑥 ∈ (1...(𝑁 − 1))))
3331, 32sylibr 134 1 (𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wne 2347  wral 2455  {crab 2459  wss 3131   class class class wbr 4005  cfv 5218  (class class class)co 5877  cr 7812  1c1 7814   < clt 7994  cmin 8130  cn 8921  2c2 8972  cz 9255  cuz 9530  ...cfz 10010  abscabs 11008   gcd cgcd 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946
This theorem is referenced by:  phibnd  12219  dfphi2  12222
  Copyright terms: Public domain W3C validator