| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddnemnf | GIF version | ||
| Description: Closure of extended real addition in the subset ℝ* / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddnemnf | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnemnf 9899 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
| 2 | xrnemnf 9899 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) | |
| 3 | rexadd 9974 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
| 4 | readdcl 8051 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 5 | 3, 4 | eqeltrd 2282 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ) |
| 6 | 5 | renemnfd 8124 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 7 | oveq2 5952 | . . . . . . 7 ⊢ (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞)) | |
| 8 | rexr 8118 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 9 | renemnf 8121 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
| 10 | xaddpnf1 9968 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) | |
| 11 | 8, 9, 10 | syl2anc 411 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞) |
| 12 | 7, 11 | sylan9eqr 2260 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞) |
| 13 | pnfnemnf 8127 | . . . . . . 7 ⊢ +∞ ≠ -∞ | |
| 14 | 13 | a1i 9 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → +∞ ≠ -∞) |
| 15 | 12, 14 | eqnetrd 2400 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 16 | 6, 15 | jaodan 799 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 17 | 2, 16 | sylan2b 287 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 18 | oveq1 5951 | . . . . 5 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵)) | |
| 19 | xaddpnf2 9969 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞) | |
| 20 | 18, 19 | sylan9eq 2258 | . . . 4 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) = +∞) |
| 21 | 13 | a1i 9 | . . . 4 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → +∞ ≠ -∞) |
| 22 | 20, 21 | eqnetrd 2400 | . . 3 ⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 23 | 17, 22 | jaoian 797 | . 2 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| 24 | 1, 23 | sylanb 284 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 (class class class)co 5944 ℝcr 7924 + caddc 7928 +∞cpnf 8104 -∞cmnf 8105 ℝ*cxr 8106 +𝑒 cxad 9892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-xadd 9895 |
| This theorem is referenced by: xaddass 9991 xlt2add 10002 xadd4d 10007 xleaddadd 10009 |
| Copyright terms: Public domain | W3C validator |