ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnemnf GIF version

Theorem xaddnemnf 9754
Description: Closure of extended real addition in the subset * / {-∞}. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnemnf (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)

Proof of Theorem xaddnemnf
StepHypRef Expression
1 xrnemnf 9677 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
2 xrnemnf 9677 . . . 4 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
3 rexadd 9749 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
4 readdcl 7852 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
53, 4eqeltrd 2234 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ)
65renemnfd 7923 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) ≠ -∞)
7 oveq2 5829 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
8 rexr 7917 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
9 renemnf 7920 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
10 xaddpnf1 9743 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
118, 9, 10syl2anc 409 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
127, 11sylan9eqr 2212 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
13 pnfnemnf 7926 . . . . . . 7 +∞ ≠ -∞
1413a1i 9 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → +∞ ≠ -∞)
1512, 14eqnetrd 2351 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) ≠ -∞)
166, 15jaodan 787 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
172, 16sylan2b 285 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
18 oveq1 5828 . . . . 5 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
19 xaddpnf2 9744 . . . . 5 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
2018, 19sylan9eq 2210 . . . 4 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) = +∞)
2113a1i 9 . . . 4 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → +∞ ≠ -∞)
2220, 21eqnetrd 2351 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
2317, 22jaoian 785 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
241, 23sylanb 282 1 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞)) → (𝐴 +𝑒 𝐵) ≠ -∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1335  wcel 2128  wne 2327  (class class class)co 5821  cr 7725   + caddc 7729  +∞cpnf 7903  -∞cmnf 7904  *cxr 7905   +𝑒 cxad 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1re 7820  ax-addrcl 7823  ax-rnegex 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-xadd 9673
This theorem is referenced by:  xaddass  9766  xlt2add  9777  xadd4d  9782  xleaddadd  9784
  Copyright terms: Public domain W3C validator