ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceeqv GIF version

Theorem rspceeqv 2894
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
Hypothesis
Ref Expression
rspceeqv.1 (𝑥 = 𝐴𝐶 = 𝐷)
Assertion
Ref Expression
rspceeqv ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem rspceeqv
StepHypRef Expression
1 rspceeqv.1 . . 3 (𝑥 = 𝐴𝐶 = 𝐷)
21eqeq2d 2216 . 2 (𝑥 = 𝐴 → (𝐸 = 𝐶𝐸 = 𝐷))
32rspcev 2876 1 ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773
This theorem is referenced by:  elixpsn  6821  ixpsnf1o  6822  elfir  7074  0ct  7208  ctmlemr  7209  ctssdclemn0  7211  fodju0  7248  mertenslemi1  11788  mertenslem2  11789  nninfctlemfo  12303  pcprmpw  12599  1arithlem4  12631  ctiunctlemfo  12752  elrestr  13021  lss1d  14087  lspsn  14120  znf1o  14355  restopnb  14595  mopnex  14919  metrest  14920  mpodvdsmulf1o  15404  lgsquadlem1  15496  2sqlem2  15534  mul2sq  15535  2sqlem3  15536  2sqlem9  15543  2sqlem10  15544  nnnninfex  15892
  Copyright terms: Public domain W3C validator