ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceeqv GIF version

Theorem rspceeqv 2882
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
Hypothesis
Ref Expression
rspceeqv.1 (𝑥 = 𝐴𝐶 = 𝐷)
Assertion
Ref Expression
rspceeqv ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem rspceeqv
StepHypRef Expression
1 rspceeqv.1 . . 3 (𝑥 = 𝐴𝐶 = 𝐷)
21eqeq2d 2205 . 2 (𝑥 = 𝐴 → (𝐸 = 𝐶𝐸 = 𝐷))
32rspcev 2864 1 ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762
This theorem is referenced by:  elixpsn  6789  ixpsnf1o  6790  elfir  7032  0ct  7166  ctmlemr  7167  ctssdclemn0  7169  fodju0  7206  mertenslemi1  11678  mertenslem2  11679  nninfctlemfo  12177  pcprmpw  12472  1arithlem4  12504  ctiunctlemfo  12596  elrestr  12858  lss1d  13879  lspsn  13912  znf1o  14139  restopnb  14349  mopnex  14673  metrest  14674  lgsquadlem1  15191  2sqlem2  15202  mul2sq  15203  2sqlem3  15204  2sqlem9  15211  2sqlem10  15212
  Copyright terms: Public domain W3C validator