![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version |
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
Ref | Expression |
---|---|
rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
2 | 1 | eqeq2d 2205 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
3 | 2 | rspcev 2865 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 |
This theorem is referenced by: elixpsn 6791 ixpsnf1o 6792 elfir 7034 0ct 7168 ctmlemr 7169 ctssdclemn0 7171 fodju0 7208 mertenslemi1 11681 mertenslem2 11682 nninfctlemfo 12180 pcprmpw 12475 1arithlem4 12507 ctiunctlemfo 12599 elrestr 12861 lss1d 13882 lspsn 13915 znf1o 14150 restopnb 14360 mopnex 14684 metrest 14685 lgsquadlem1 15234 2sqlem2 15272 mul2sq 15273 2sqlem3 15274 2sqlem9 15281 2sqlem10 15282 |
Copyright terms: Public domain | W3C validator |