![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version |
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
Ref | Expression |
---|---|
rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
2 | 1 | eqeq2d 2205 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
3 | 2 | rspcev 2864 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 |
This theorem is referenced by: elixpsn 6789 ixpsnf1o 6790 elfir 7032 0ct 7166 ctmlemr 7167 ctssdclemn0 7169 fodju0 7206 mertenslemi1 11678 mertenslem2 11679 nninfctlemfo 12177 pcprmpw 12472 1arithlem4 12504 ctiunctlemfo 12596 elrestr 12858 lss1d 13879 lspsn 13912 znf1o 14139 restopnb 14349 mopnex 14673 metrest 14674 lgsquadlem1 15191 2sqlem2 15202 mul2sq 15203 2sqlem3 15204 2sqlem9 15211 2sqlem10 15212 |
Copyright terms: Public domain | W3C validator |