ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceeqv GIF version

Theorem rspceeqv 2874
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
Hypothesis
Ref Expression
rspceeqv.1 (𝑥 = 𝐴𝐶 = 𝐷)
Assertion
Ref Expression
rspceeqv ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem rspceeqv
StepHypRef Expression
1 rspceeqv.1 . . 3 (𝑥 = 𝐴𝐶 = 𝐷)
21eqeq2d 2201 . 2 (𝑥 = 𝐴 → (𝐸 = 𝐶𝐸 = 𝐷))
32rspcev 2856 1 ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wrex 2469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754
This theorem is referenced by:  elixpsn  6760  ixpsnf1o  6761  elfir  7001  0ct  7135  ctmlemr  7136  ctssdclemn0  7138  fodju0  7174  mertenslemi1  11574  mertenslem2  11575  pcprmpw  12365  1arithlem4  12397  ctiunctlemfo  12489  elrestr  12749  lss1d  13696  lspsn  13729  restopnb  14133  mopnex  14457  metrest  14458  2sqlem2  14915  mul2sq  14916  2sqlem3  14917  2sqlem9  14924  2sqlem10  14925
  Copyright terms: Public domain W3C validator