![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version |
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
Ref | Expression |
---|---|
rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
2 | 1 | eqeq2d 2201 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
3 | 2 | rspcev 2856 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 |
This theorem is referenced by: elixpsn 6760 ixpsnf1o 6761 elfir 7001 0ct 7135 ctmlemr 7136 ctssdclemn0 7138 fodju0 7174 mertenslemi1 11574 mertenslem2 11575 pcprmpw 12365 1arithlem4 12397 ctiunctlemfo 12489 elrestr 12749 lss1d 13696 lspsn 13729 restopnb 14133 mopnex 14457 metrest 14458 2sqlem2 14915 mul2sq 14916 2sqlem3 14917 2sqlem9 14924 2sqlem10 14925 |
Copyright terms: Public domain | W3C validator |