| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
| 2 | 1 | eqeq2d 2216 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
| 3 | 2 | rspcev 2876 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 |
| This theorem is referenced by: elixpsn 6821 ixpsnf1o 6822 elfir 7074 0ct 7208 ctmlemr 7209 ctssdclemn0 7211 fodju0 7248 mertenslemi1 11788 mertenslem2 11789 nninfctlemfo 12303 pcprmpw 12599 1arithlem4 12631 ctiunctlemfo 12752 elrestr 13021 lss1d 14087 lspsn 14120 znf1o 14355 restopnb 14595 mopnex 14919 metrest 14920 mpodvdsmulf1o 15404 lgsquadlem1 15496 2sqlem2 15534 mul2sq 15535 2sqlem3 15536 2sqlem9 15543 2sqlem10 15544 nnnninfex 15892 |
| Copyright terms: Public domain | W3C validator |