| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
| 2 | 1 | eqeq2d 2208 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
| 3 | 2 | rspcev 2868 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 |
| This theorem is referenced by: elixpsn 6794 ixpsnf1o 6795 elfir 7039 0ct 7173 ctmlemr 7174 ctssdclemn0 7176 fodju0 7213 mertenslemi1 11700 mertenslem2 11701 nninfctlemfo 12207 pcprmpw 12503 1arithlem4 12535 ctiunctlemfo 12656 elrestr 12918 lss1d 13939 lspsn 13972 znf1o 14207 restopnb 14417 mopnex 14741 metrest 14742 mpodvdsmulf1o 15226 lgsquadlem1 15318 2sqlem2 15356 mul2sq 15357 2sqlem3 15358 2sqlem9 15365 2sqlem10 15366 |
| Copyright terms: Public domain | W3C validator |