| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
| 2 | 1 | eqeq2d 2208 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
| 3 | 2 | rspcev 2868 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 |
| This theorem is referenced by: elixpsn 6803 ixpsnf1o 6804 elfir 7048 0ct 7182 ctmlemr 7183 ctssdclemn0 7185 fodju0 7222 mertenslemi1 11717 mertenslem2 11718 nninfctlemfo 12232 pcprmpw 12528 1arithlem4 12560 ctiunctlemfo 12681 elrestr 12949 lss1d 14015 lspsn 14048 znf1o 14283 restopnb 14501 mopnex 14825 metrest 14826 mpodvdsmulf1o 15310 lgsquadlem1 15402 2sqlem2 15440 mul2sq 15441 2sqlem3 15442 2sqlem9 15449 2sqlem10 15450 |
| Copyright terms: Public domain | W3C validator |