Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version |
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
Ref | Expression |
---|---|
rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
2 | 1 | eqeq2d 2177 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
3 | 2 | rspcev 2830 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 |
This theorem is referenced by: elixpsn 6701 ixpsnf1o 6702 elfir 6938 0ct 7072 ctmlemr 7073 ctssdclemn0 7075 fodju0 7111 mertenslemi1 11476 mertenslem2 11477 pcprmpw 12265 1arithlem4 12296 ctiunctlemfo 12372 elrestr 12564 restopnb 12821 mopnex 13145 metrest 13146 2sqlem2 13591 mul2sq 13592 2sqlem3 13593 2sqlem9 13600 2sqlem10 13601 |
Copyright terms: Public domain | W3C validator |