ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceeqv GIF version

Theorem rspceeqv 2886
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.)
Hypothesis
Ref Expression
rspceeqv.1 (𝑥 = 𝐴𝐶 = 𝐷)
Assertion
Ref Expression
rspceeqv ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem rspceeqv
StepHypRef Expression
1 rspceeqv.1 . . 3 (𝑥 = 𝐴𝐶 = 𝐷)
21eqeq2d 2208 . 2 (𝑥 = 𝐴 → (𝐸 = 𝐶𝐸 = 𝐷))
32rspcev 2868 1 ((𝐴𝐵𝐸 = 𝐷) → ∃𝑥𝐵 𝐸 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765
This theorem is referenced by:  elixpsn  6803  ixpsnf1o  6804  elfir  7048  0ct  7182  ctmlemr  7183  ctssdclemn0  7185  fodju0  7222  mertenslemi1  11719  mertenslem2  11720  nninfctlemfo  12234  pcprmpw  12530  1arithlem4  12562  ctiunctlemfo  12683  elrestr  12951  lss1d  14017  lspsn  14050  znf1o  14285  restopnb  14525  mopnex  14849  metrest  14850  mpodvdsmulf1o  15334  lgsquadlem1  15426  2sqlem2  15464  mul2sq  15465  2sqlem3  15466  2sqlem9  15473  2sqlem10  15474  nnnninfex  15777
  Copyright terms: Public domain W3C validator