| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version | ||
| Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
| Ref | Expression |
|---|---|
| rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
| 2 | 1 | eqeq2d 2218 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
| 3 | 2 | rspcev 2881 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 |
| This theorem is referenced by: elixpsn 6835 ixpsnf1o 6836 elfir 7090 0ct 7224 ctmlemr 7225 ctssdclemn0 7227 fodju0 7264 ccats1pfxeqrex 11191 mertenslemi1 11921 mertenslem2 11922 nninfctlemfo 12436 pcprmpw 12732 1arithlem4 12764 ctiunctlemfo 12885 elrestr 13154 lss1d 14220 lspsn 14253 znf1o 14488 restopnb 14728 mopnex 15052 metrest 15053 mpodvdsmulf1o 15537 lgsquadlem1 15629 2sqlem2 15667 mul2sq 15668 2sqlem3 15669 2sqlem9 15676 2sqlem10 15677 nnnninfex 16100 |
| Copyright terms: Public domain | W3C validator |