Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspceeqv | GIF version |
Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022.) |
Ref | Expression |
---|---|
rspceeqv.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rspceeqv | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceeqv.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
2 | 1 | eqeq2d 2182 | . 2 ⊢ (𝑥 = 𝐴 → (𝐸 = 𝐶 ↔ 𝐸 = 𝐷)) |
3 | 2 | rspcev 2834 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐸 = 𝐷) → ∃𝑥 ∈ 𝐵 𝐸 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: elixpsn 6713 ixpsnf1o 6714 elfir 6950 0ct 7084 ctmlemr 7085 ctssdclemn0 7087 fodju0 7123 mertenslemi1 11498 mertenslem2 11499 pcprmpw 12287 1arithlem4 12318 ctiunctlemfo 12394 elrestr 12587 restopnb 12975 mopnex 13299 metrest 13300 2sqlem2 13745 mul2sq 13746 2sqlem3 13747 2sqlem9 13754 2sqlem10 13755 |
Copyright terms: Public domain | W3C validator |