![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2b | GIF version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | ⊢ 𝜑 |
mp2b.2 | ⊢ (𝜑 → 𝜓) |
mp2b.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
mp2b | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 |
This theorem is referenced by: eqvinc 2860 2ordpr 4523 regexmid 4534 ordsoexmid 4561 reg3exmid 4579 intasym 5013 relcoi1 5160 funres11 5288 cnvresid 5290 mpofvex 6203 df1st2 6219 df2nd2 6220 dftpos4 6263 tposf12 6269 frecabcl 6399 xp01disjl 6434 xpcomco 6825 ominf 6895 sbthlem2 6956 djuunr 7064 eldju 7066 ctssdccl 7109 ctssdclemr 7110 omct 7115 ctssexmid 7147 rec1nq 7393 halfnqq 7408 caucvgsrlemasr 7788 axresscn 7858 0re 7956 gtso 8035 cnegexlem2 8132 uzn0 9542 indstr 9592 dfioo2 9973 fnn0nninf 10436 hashinfuni 10756 hashp1i 10789 cnrecnv 10918 rexanuz 10996 xrmaxiflemcom 11256 climdm 11302 sumsnf 11416 tanvalap 11715 egt2lt3 11786 lcmgcdlem 12076 3prm 12127 sqpweven 12174 2sqpwodd 12175 qnumval 12184 qdenval 12185 xpnnen 12394 ennnfonelemhdmp1 12409 ennnfonelemss 12410 ennnfonelemnn0 12422 qnnen 12431 ctiunctal 12441 unct 12442 structcnvcnv 12477 setsslid 12512 xpsfrn 12768 xpsff1o2 12769 ringn0 13235 cnfldsub 13439 cnsubmlem 13442 cnsubglem 13443 zring0 13460 tgrest 13639 lmbr2 13684 cnptoprest 13709 lmff 13719 tx1cn 13739 tx2cn 13740 cnblcld 14005 tgioo 14016 reeff1o 14164 pilem1 14170 efhalfpi 14190 coseq0negpitopi 14227 012of 14715 pw1nct 14722 iswomninnlem 14767 |
Copyright terms: Public domain | W3C validator |