![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2b | GIF version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | ⊢ 𝜑 |
mp2b.2 | ⊢ (𝜑 → 𝜓) |
mp2b.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
mp2b | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 |
This theorem is referenced by: eqvinc 2861 2ordpr 4524 regexmid 4535 ordsoexmid 4562 reg3exmid 4580 intasym 5014 relcoi1 5161 funres11 5289 cnvresid 5291 mpofvex 6204 df1st2 6220 df2nd2 6221 dftpos4 6264 tposf12 6270 frecabcl 6400 xp01disjl 6435 xpcomco 6826 ominf 6896 sbthlem2 6957 djuunr 7065 eldju 7067 ctssdccl 7110 ctssdclemr 7111 omct 7116 ctssexmid 7148 rec1nq 7394 halfnqq 7409 caucvgsrlemasr 7789 axresscn 7859 0re 7957 gtso 8036 cnegexlem2 8133 uzn0 9543 indstr 9593 dfioo2 9974 fnn0nninf 10437 hashinfuni 10757 hashp1i 10790 cnrecnv 10919 rexanuz 10997 xrmaxiflemcom 11257 climdm 11303 sumsnf 11417 tanvalap 11716 egt2lt3 11787 lcmgcdlem 12077 3prm 12128 sqpweven 12175 2sqpwodd 12176 qnumval 12185 qdenval 12186 xpnnen 12395 ennnfonelemhdmp1 12410 ennnfonelemss 12411 ennnfonelemnn0 12423 qnnen 12432 ctiunctal 12442 unct 12443 structcnvcnv 12478 setsslid 12513 xpsfrn 12769 xpsff1o2 12770 ringn0 13237 rmodislmodlem 13440 cnfldsub 13472 cnsubmlem 13475 cnsubglem 13476 zring0 13493 tgrest 13672 lmbr2 13717 cnptoprest 13742 lmff 13752 tx1cn 13772 tx2cn 13773 cnblcld 14038 tgioo 14049 reeff1o 14197 pilem1 14203 efhalfpi 14223 coseq0negpitopi 14260 012of 14748 pw1nct 14755 iswomninnlem 14800 |
Copyright terms: Public domain | W3C validator |