| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | GIF version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 | ⊢ 𝜑 |
| mp2b.2 | ⊢ (𝜑 → 𝜓) |
| mp2b.3 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| mp2b | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
| 4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2887 2ordpr 4561 regexmid 4572 ordsoexmid 4599 reg3exmid 4617 intasym 5055 relcoi1 5202 funres11 5331 cnvresid 5333 mpofvex 6272 df1st2 6286 df2nd2 6287 dftpos4 6330 tposf12 6336 frecabcl 6466 xp01disjl 6501 xpcomco 6894 ominf 6966 sbthlem2 7033 djuunr 7141 eldju 7143 ctssdccl 7186 ctssdclemr 7187 omct 7192 ctssexmid 7225 rec1nq 7481 halfnqq 7496 caucvgsrlemasr 7876 axresscn 7946 0re 8045 gtso 8124 cnegexlem2 8221 uzn0 9636 indstr 9686 dfioo2 10068 fnn0nninf 10549 hashinfuni 10888 hashp1i 10921 cnrecnv 11094 rexanuz 11172 xrmaxiflemcom 11433 climdm 11479 sumsnf 11593 tanvalap 11892 egt2lt3 11964 lcmgcdlem 12272 3prm 12323 sqpweven 12370 2sqpwodd 12371 qnumval 12380 qdenval 12381 modxai 12612 xpnnen 12638 ennnfonelemhdmp1 12653 ennnfonelemss 12654 ennnfonelemnn0 12666 qnnen 12675 ctiunctal 12685 unct 12686 structcnvcnv 12721 setsslid 12756 prdsvallem 12976 prdsval 12977 xpsfrn 13054 xpsff1o2 13055 ringn0 13694 rmodislmodlem 13984 cnfldstr 14192 cnfldadd 14196 cnfldmul 14198 cnfldsub 14209 cnsubmlem 14212 cnsubglem 14213 zring0 14234 tgrest 14491 lmbr2 14536 cnptoprest 14561 lmff 14571 tx1cn 14591 tx2cn 14592 cnblcld 14857 cnfldms 14858 cnfldtopn 14861 tgioo 14876 reeff1o 15095 pilem1 15101 efhalfpi 15121 coseq0negpitopi 15158 012of 15726 pw1nct 15736 nnnninfen 15754 iswomninnlem 15784 |
| Copyright terms: Public domain | W3C validator |