| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mp2b | GIF version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| mp2b.1 | ⊢ 𝜑 | 
| mp2b.2 | ⊢ (𝜑 → 𝜓) | 
| mp2b.3 | ⊢ (𝜓 → 𝜒) | 
| Ref | Expression | 
|---|---|
| mp2b | ⊢ 𝜒 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 | 
| 4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 | 
| This theorem is referenced by: eqvinc 2887 2ordpr 4560 regexmid 4571 ordsoexmid 4598 reg3exmid 4616 intasym 5054 relcoi1 5201 funres11 5330 cnvresid 5332 mpofvex 6263 df1st2 6277 df2nd2 6278 dftpos4 6321 tposf12 6327 frecabcl 6457 xp01disjl 6492 xpcomco 6885 ominf 6957 sbthlem2 7024 djuunr 7132 eldju 7134 ctssdccl 7177 ctssdclemr 7178 omct 7183 ctssexmid 7216 rec1nq 7462 halfnqq 7477 caucvgsrlemasr 7857 axresscn 7927 0re 8026 gtso 8105 cnegexlem2 8202 uzn0 9617 indstr 9667 dfioo2 10049 fnn0nninf 10530 hashinfuni 10869 hashp1i 10902 cnrecnv 11075 rexanuz 11153 xrmaxiflemcom 11414 climdm 11460 sumsnf 11574 tanvalap 11873 egt2lt3 11945 lcmgcdlem 12245 3prm 12296 sqpweven 12343 2sqpwodd 12344 qnumval 12353 qdenval 12354 modxai 12585 xpnnen 12611 ennnfonelemhdmp1 12626 ennnfonelemss 12627 ennnfonelemnn0 12639 qnnen 12648 ctiunctal 12658 unct 12659 structcnvcnv 12694 setsslid 12729 xpsfrn 12993 xpsff1o2 12994 ringn0 13616 rmodislmodlem 13906 cnfldstr 14114 cnfldadd 14118 cnfldmul 14120 cnfldsub 14131 cnsubmlem 14134 cnsubglem 14135 zring0 14156 tgrest 14405 lmbr2 14450 cnptoprest 14475 lmff 14485 tx1cn 14505 tx2cn 14506 cnblcld 14771 cnfldms 14772 cnfldtopn 14775 tgioo 14790 reeff1o 15009 pilem1 15015 efhalfpi 15035 coseq0negpitopi 15072 012of 15640 pw1nct 15647 nnnninfen 15665 iswomninnlem 15693 | 
| Copyright terms: Public domain | W3C validator |