| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | GIF version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 | ⊢ 𝜑 |
| mp2b.2 | ⊢ (𝜑 → 𝜓) |
| mp2b.3 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| mp2b | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
| 4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2906 2ordpr 4593 regexmid 4604 ordsoexmid 4631 reg3exmid 4649 intasym 5089 relcoi1 5236 funres11 5369 cnvresid 5371 mpofvex 6321 df1st2 6335 df2nd2 6336 dftpos4 6379 tposf12 6385 frecabcl 6515 xp01disjl 6550 xpcomco 6953 1ndom2 6994 ominf 7026 sbthlem2 7093 djuunr 7201 eldju 7203 ctssdccl 7246 ctssdclemr 7247 omct 7252 ctssexmid 7285 rec1nq 7550 halfnqq 7565 caucvgsrlemasr 7945 axresscn 8015 0re 8114 gtso 8193 cnegexlem2 8290 uzn0 9706 indstr 9756 dfioo2 10138 fnn0nninf 10627 hashinfuni 10966 hashp1i 10999 cnrecnv 11387 rexanuz 11465 xrmaxiflemcom 11726 climdm 11772 sumsnf 11886 tanvalap 12185 egt2lt3 12257 lcmgcdlem 12565 3prm 12616 sqpweven 12663 2sqpwodd 12664 qnumval 12673 qdenval 12674 modxai 12905 xpnnen 12931 ennnfonelemhdmp1 12946 ennnfonelemss 12947 ennnfonelemnn0 12959 qnnen 12968 ctiunctal 12978 unct 12979 structcnvcnv 13014 setsslid 13049 prdsvallem 13271 prdsval 13272 xpsfrn 13349 xpsff1o2 13350 ringn0 13989 rmodislmodlem 14279 cnfldstr 14487 cnfldadd 14491 cnfldmul 14493 cnfldsub 14504 cnsubmlem 14507 cnsubglem 14508 zring0 14529 tgrest 14808 lmbr2 14853 cnptoprest 14878 lmff 14888 tx1cn 14908 tx2cn 14909 cnblcld 15174 cnfldms 15175 cnfldtopn 15178 tgioo 15193 reeff1o 15412 pilem1 15418 efhalfpi 15438 coseq0negpitopi 15475 012of 16268 pw1nct 16280 nnnninfen 16298 iswomninnlem 16328 |
| Copyright terms: Public domain | W3C validator |