| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | GIF version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 | ⊢ 𝜑 |
| mp2b.2 | ⊢ (𝜑 → 𝜓) |
| mp2b.3 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| mp2b | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
| 4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2897 2ordpr 4576 regexmid 4587 ordsoexmid 4614 reg3exmid 4632 intasym 5072 relcoi1 5219 funres11 5351 cnvresid 5353 mpofvex 6298 df1st2 6312 df2nd2 6313 dftpos4 6356 tposf12 6362 frecabcl 6492 xp01disjl 6527 xpcomco 6928 ominf 7000 sbthlem2 7067 djuunr 7175 eldju 7177 ctssdccl 7220 ctssdclemr 7221 omct 7226 ctssexmid 7259 rec1nq 7515 halfnqq 7530 caucvgsrlemasr 7910 axresscn 7980 0re 8079 gtso 8158 cnegexlem2 8255 uzn0 9671 indstr 9721 dfioo2 10103 fnn0nninf 10590 hashinfuni 10929 hashp1i 10962 cnrecnv 11265 rexanuz 11343 xrmaxiflemcom 11604 climdm 11650 sumsnf 11764 tanvalap 12063 egt2lt3 12135 lcmgcdlem 12443 3prm 12494 sqpweven 12541 2sqpwodd 12542 qnumval 12551 qdenval 12552 modxai 12783 xpnnen 12809 ennnfonelemhdmp1 12824 ennnfonelemss 12825 ennnfonelemnn0 12837 qnnen 12846 ctiunctal 12856 unct 12857 structcnvcnv 12892 setsslid 12927 prdsvallem 13148 prdsval 13149 xpsfrn 13226 xpsff1o2 13227 ringn0 13866 rmodislmodlem 14156 cnfldstr 14364 cnfldadd 14368 cnfldmul 14370 cnfldsub 14381 cnsubmlem 14384 cnsubglem 14385 zring0 14406 tgrest 14685 lmbr2 14730 cnptoprest 14755 lmff 14765 tx1cn 14785 tx2cn 14786 cnblcld 15051 cnfldms 15052 cnfldtopn 15055 tgioo 15070 reeff1o 15289 pilem1 15295 efhalfpi 15315 coseq0negpitopi 15352 012of 16004 pw1nct 16014 nnnninfen 16032 iswomninnlem 16062 |
| Copyright terms: Public domain | W3C validator |