![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2b | GIF version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | ⊢ 𝜑 |
mp2b.2 | ⊢ (𝜑 → 𝜓) |
mp2b.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
mp2b | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ 𝜓 |
4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
5 | 3, 4 | ax-mp 7 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 7 |
This theorem is referenced by: eqvinc 2740 2ordpr 4340 regexmid 4351 ordsoexmid 4378 reg3exmid 4395 intasym 4816 relcoi1 4962 funres11 5086 cnvresid 5088 mpt2fvex 5973 df1st2 5984 df2nd2 5985 dftpos4 6028 tposf12 6034 frecabcl 6164 xpcomco 6542 ominf 6612 sbthlem2 6667 djuin 6756 djuunr 6758 eldju 6759 rec1nq 6954 halfnqq 6969 caucvgsrlemasr 7335 axresscn 7397 0re 7488 gtso 7564 cnegexlem2 7658 uzn0 9034 indstr 9081 dfioo2 9392 fnn0nninf 9843 hashinfuni 10185 hashp1i 10218 cnrecnv 10344 rexanuz 10421 climdm 10683 sumsnf 10803 tanvalap 10999 egt2lt3 11067 lcmgcdlem 11337 3prm 11388 sqpweven 11431 2sqpwodd 11432 qnumval 11441 qdenval 11442 xpnnen 11485 structcnvcnv 11510 setsslid 11544 |
Copyright terms: Public domain | W3C validator |