![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2b | GIF version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | ⊢ 𝜑 |
mp2b.2 | ⊢ (𝜑 → 𝜓) |
mp2b.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
mp2b | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 |
This theorem is referenced by: eqvinc 2884 2ordpr 4557 regexmid 4568 ordsoexmid 4595 reg3exmid 4613 intasym 5051 relcoi1 5198 funres11 5327 cnvresid 5329 mpofvex 6260 df1st2 6274 df2nd2 6275 dftpos4 6318 tposf12 6324 frecabcl 6454 xp01disjl 6489 xpcomco 6882 ominf 6954 sbthlem2 7019 djuunr 7127 eldju 7129 ctssdccl 7172 ctssdclemr 7173 omct 7178 ctssexmid 7211 rec1nq 7457 halfnqq 7472 caucvgsrlemasr 7852 axresscn 7922 0re 8021 gtso 8100 cnegexlem2 8197 uzn0 9611 indstr 9661 dfioo2 10043 fnn0nninf 10512 hashinfuni 10851 hashp1i 10884 cnrecnv 11057 rexanuz 11135 xrmaxiflemcom 11395 climdm 11441 sumsnf 11555 tanvalap 11854 egt2lt3 11926 lcmgcdlem 12218 3prm 12269 sqpweven 12316 2sqpwodd 12317 qnumval 12326 qdenval 12327 xpnnen 12554 ennnfonelemhdmp1 12569 ennnfonelemss 12570 ennnfonelemnn0 12582 qnnen 12591 ctiunctal 12601 unct 12602 structcnvcnv 12637 setsslid 12672 xpsfrn 12936 xpsff1o2 12937 ringn0 13559 rmodislmodlem 13849 cnfldstr 14057 cnfldadd 14061 cnfldmul 14063 cnfldsub 14074 cnsubmlem 14077 cnsubglem 14078 zring0 14099 tgrest 14348 lmbr2 14393 cnptoprest 14418 lmff 14428 tx1cn 14448 tx2cn 14449 cnblcld 14714 cnfldms 14715 cnfldtopn 14718 tgioo 14733 reeff1o 14949 pilem1 14955 efhalfpi 14975 coseq0negpitopi 15012 012of 15556 pw1nct 15563 nnnninfen 15581 iswomninnlem 15609 |
Copyright terms: Public domain | W3C validator |