![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2b | GIF version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | ⊢ 𝜑 |
mp2b.2 | ⊢ (𝜑 → 𝜓) |
mp2b.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
mp2b | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 |
This theorem is referenced by: eqvinc 2875 2ordpr 4538 regexmid 4549 ordsoexmid 4576 reg3exmid 4594 intasym 5028 relcoi1 5175 funres11 5303 cnvresid 5305 mpofvex 6222 df1st2 6238 df2nd2 6239 dftpos4 6282 tposf12 6288 frecabcl 6418 xp01disjl 6453 xpcomco 6844 ominf 6914 sbthlem2 6975 djuunr 7083 eldju 7085 ctssdccl 7128 ctssdclemr 7129 omct 7134 ctssexmid 7166 rec1nq 7412 halfnqq 7427 caucvgsrlemasr 7807 axresscn 7877 0re 7975 gtso 8054 cnegexlem2 8151 uzn0 9561 indstr 9611 dfioo2 9992 fnn0nninf 10455 hashinfuni 10775 hashp1i 10808 cnrecnv 10937 rexanuz 11015 xrmaxiflemcom 11275 climdm 11321 sumsnf 11435 tanvalap 11734 egt2lt3 11805 lcmgcdlem 12095 3prm 12146 sqpweven 12193 2sqpwodd 12194 qnumval 12203 qdenval 12204 xpnnen 12413 ennnfonelemhdmp1 12428 ennnfonelemss 12429 ennnfonelemnn0 12441 qnnen 12450 ctiunctal 12460 unct 12461 structcnvcnv 12496 setsslid 12531 xpsfrn 12792 xpsff1o2 12793 ringn0 13373 rmodislmodlem 13627 cnfldsub 13839 cnsubmlem 13842 cnsubglem 13843 zring0 13860 tgrest 14066 lmbr2 14111 cnptoprest 14136 lmff 14146 tx1cn 14166 tx2cn 14167 cnblcld 14432 tgioo 14443 reeff1o 14591 pilem1 14597 efhalfpi 14617 coseq0negpitopi 14654 012of 15143 pw1nct 15150 iswomninnlem 15195 |
Copyright terms: Public domain | W3C validator |