| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | GIF version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 | ⊢ 𝜑 |
| mp2b.2 | ⊢ (𝜑 → 𝜓) |
| mp2b.3 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| mp2b | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp2b.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝜓 |
| 4 | mp2b.3 | . 2 ⊢ (𝜓 → 𝜒) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2926 2ordpr 4616 regexmid 4627 ordsoexmid 4654 reg3exmid 4672 intasym 5113 relcoi1 5260 funres11 5393 cnvresid 5395 mpofvex 6357 df1st2 6371 df2nd2 6372 dftpos4 6415 tposf12 6421 frecabcl 6551 xp01disjl 6588 xpcomco 6993 1ndom2 7034 ominf 7066 sbthlem2 7133 djuunr 7241 eldju 7243 ctssdccl 7286 ctssdclemr 7287 omct 7292 ctssexmid 7325 rec1nq 7590 halfnqq 7605 caucvgsrlemasr 7985 axresscn 8055 0re 8154 gtso 8233 cnegexlem2 8330 uzn0 9746 indstr 9796 dfioo2 10178 fnn0nninf 10668 hashinfuni 11007 hashp1i 11040 cnrecnv 11429 rexanuz 11507 xrmaxiflemcom 11768 climdm 11814 sumsnf 11928 tanvalap 12227 egt2lt3 12299 lcmgcdlem 12607 3prm 12658 sqpweven 12705 2sqpwodd 12706 qnumval 12715 qdenval 12716 modxai 12947 xpnnen 12973 ennnfonelemhdmp1 12988 ennnfonelemss 12989 ennnfonelemnn0 13001 qnnen 13010 ctiunctal 13020 unct 13021 structcnvcnv 13056 setsslid 13091 prdsvallem 13313 prdsval 13314 xpsfrn 13391 xpsff1o2 13392 ringn0 14031 rmodislmodlem 14322 cnfldstr 14530 cnfldadd 14534 cnfldmul 14536 cnfldsub 14547 cnsubmlem 14550 cnsubglem 14551 zring0 14572 tgrest 14851 lmbr2 14896 cnptoprest 14921 lmff 14931 tx1cn 14951 tx2cn 14952 cnblcld 15217 cnfldms 15218 cnfldtopn 15221 tgioo 15236 reeff1o 15455 pilem1 15461 efhalfpi 15481 coseq0negpitopi 15518 pw1ninf 16384 012of 16386 pw1nct 16398 nnnninfen 16417 iswomninnlem 16447 |
| Copyright terms: Public domain | W3C validator |