ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsng GIF version

Theorem rexsng 3600
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexsng (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rexsng
StepHypRef Expression
1 rexsns 3598 . 2 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
2 ralsng.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 2969 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
41, 3syl5bb 191 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wcel 2128  wrex 2436  [wsbc 2937  {csn 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-sbc 2938  df-sn 3566
This theorem is referenced by:  rexsn  3603  rexprg  3611  rextpg  3613  iunxsng  3924  imasng  4948
  Copyright terms: Public domain W3C validator